当前位置: 首页 > news >正文

强化学习_06_pytorch-PPO2实践(ALE/Breakout-v5)

一、环境适当调整

  1. 数据收集:RecordEpisodeStatistics
  2. 进行起始跳过n帧:baseSkipFrame
  3. 一条生命结束记录为done:EpisodicLifeEnv
  4. 得分处理成0或1:ClipRewardEnv
  5. 叠帧: FrameStack
    • 图像环境的基本操作,方便CNN捕捉智能体的行动
  6. 向量空间reset处理修复
    • gym.vector.SyncVectorEnv: 原始代码中的reset是随机的
    • 继承重写的spSyncVectorEnv方法,支持每个向量的环境的seed一致,利于同一seed下环境的训练

class spSyncVectorEnv(gym.vector.SyncVectorEnv):"""step_await _terminateds reset"""def __init__(self,env_fns: Iterable[Callable[[], Env]],observation_space: Space = None,action_space: Space = None,copy: bool = True,random_reset: bool = False,seed: int = None):super().__init__(env_fns, observation_space, action_space, copy)self.random_reset = random_resetself.seed = seeddef step_wait(self) -> Tuple[Any, NDArray[Any], NDArray[Any], NDArray[Any], dict]:"""Steps through each of the environments returning the batched results.Returns:The batched environment step results"""observations, infos = [], {}for i, (env, action) in enumerate(zip(self.envs, self._actions)):(observation,self._rewards[i],self._terminateds[i],self._truncateds[i],info,) = env.step(action)if self._terminateds[i]:old_observation, old_info = observation, infoif self.random_reset:observation, info = env.reset(seed=np.random.randint(0, 999999))else:observation, info = env.reset() if self.seed is None else env.reset(seed=self.seed) info["final_observation"] = old_observationinfo["final_info"] = old_infoobservations.append(observation)infos = self._add_info(infos, info, i)self.observations = concatenate(self.single_observation_space, observations, self.observations)return (deepcopy(self.observations) if self.copy else self.observations,np.copy(self._rewards),np.copy(self._terminateds),np.copy(self._truncateds),infos,)

二、pytorch实践

2.1 智能体构建与训练

详细可见 Github: test_ppo_atari.Breakout_v5_ppo2_test

调整向量环境的reset 之后

  • 支持actor, criticor用同一个cnn层提取特征(PPOSharedCNN)
  • eps进行了调小->eps=0.165,希望更新的策略范围更小一些;
  • 关闭学习率衰减
  • 进行不同ent_coef的尝试: 稍微大一点,增加agent的探索;
    • ent_coef=0.015 & batch_size=256+128batch 陡降-回升慢
    • ent_coef=0.025 & batch_size=256 陡降回升-最终reward=311
    • ent_coef=0.05 & batch_size=256 -最终PPO2__AtariEnv instance__20241029__2217 reward=416
    • ent_coef=0.05 & batch_size=256+128
    • ent_coef=0.1 & batch_size=256 提升过于平缓
      在这里插入图片描述
      在这里插入图片描述
env_name = 'ALE/Breakout-v5' 
env_name_str = env_name.replace('/', '-')
gym_env_desc(env_name)
print("gym.__version__ = ", gym.__version__ )
path_ = os.path.dirname(__file__)
num_envs = 12
episod_life = True
clip_reward = True
resize_inner_area = True # True
env_pool_flag = False # True
seed = 202404
envs = spSyncVectorEnv([make_atari_env(env_name, skip=4, episod_life=episod_life, clip_reward=clip_reward, ppo_train=True, max_no_reward_count=120, resize_inner_area=resize_inner_area) for _ in range(num_envs)],random_reset=False,seed=202404
)
dist_type = 'norm'
cfg = Config(envs, save_path=os.path.join(path_, "test_models" ,f'PPO2_{env_name_str}-2'),  seed=202404,num_envs=num_envs,episod_life=episod_life,clip_reward=clip_reward,resize_inner_area=resize_inner_area,env_pool_flag=env_pool_flag,# 网络参数 Atria-CNN + MLPactor_hidden_layers_dim=[512, 256], critic_hidden_layers_dim=[512, 128], # agent参数actor_lr=4.5e-4,   gamma=0.99,# 训练参数num_episode=3600,  off_buffer_size=128,  max_episode_steps=128, PPO_kwargs={'cnn_flag': True,'clean_rl_cnn': True,'share_cnn_flag': True,'continue_action_flag': False,'lmbda': 0.95,'eps':  0.165,  # 0.165'k_epochs': 4,  #  update_epochs'sgd_batch_size': 512,  'minibatch_size': 256, 'act_type': 'relu','dist_type': dist_type,'critic_coef': 1.0, # 1.0'ent_coef': 0.05, 'max_grad_norm': 0.5,  'clip_vloss': True,'mini_adv_norm': True,'anneal_lr': False,'num_episode': 3600,}
)
minibatch_size = cfg.PPO_kwargs['minibatch_size']
max_grad_norm = cfg.PPO_kwargs['max_grad_norm']
cfg.trail_desc = f"actor_lr={cfg.actor_lr},minibatch_size={minibatch_size},max_grad_norm={max_grad_norm},hidden_layers={cfg.actor_hidden_layers_dim}",
agent = PPO2(state_dim=cfg.state_dim,actor_hidden_layers_dim=cfg.actor_hidden_layers_dim,critic_hidden_layers_dim=cfg.critic_hidden_layers_dim,action_dim=cfg.action_dim,actor_lr=cfg.actor_lr,critic_lr=cfg.critic_lr,gamma=cfg.gamma,PPO_kwargs=cfg.PPO_kwargs,device=cfg.device,reward_func=None
)
agent.train()
ppo2_train(envs, agent, cfg, wandb_flag=True, wandb_project_name=f"PPO2-{env_name_str}-NEW",train_without_seed=False, test_ep_freq=cfg.off_buffer_size * 10, online_collect_nums=cfg.off_buffer_size,test_episode_count=10, add_max_step_reward_flag=False,play_func='ppo2_play',ply_env=ply_env
)

2.2 训练出的智能体观测

最后将训练的最好的网络拿出来进行观察


env = make_atari_env(env_name, skip=4, episod_life=episod_life, clip_reward=clip_reward, ppo_train=True, max_no_reward_count=120, resize_inner_area=resize_inner_area, render_mode='human')()
ppo2_play(env, agent, cfg, episode_count=2, play_without_seed=False, render=True, ppo_train=True)

在这里插入图片描述

相关文章:

强化学习_06_pytorch-PPO2实践(ALE/Breakout-v5)

一、环境适当调整 数据收集:RecordEpisodeStatistics进行起始跳过n帧:baseSkipFrame一条生命结束记录为done:EpisodicLifeEnv得分处理成0或1:ClipRewardEnv叠帧: FrameStack 图像环境的基本操作,方便CNN捕捉智能体的行动 向量空间reset处理修…...

《JVM第8课》垃圾回收算法

文章目录 1.标记算法1.1 引用计数法1.2 可达性分析法 2.回收算法2.1 标记-清除算法(Mark-Sweep)2.2 复制算法(Coping)2.3 标记-整理算法(Mark-Compact) 3.三种垃圾回收算法的对比 为什么要进行垃圾回收&…...

SpringBoot整合Freemarker(二)

if分支 语法&#xff1a; <#if condition>... <#elseif condition2>... <#elseif condition3>... <#else>... </#if> 例子&#xff1a; <#if x 1>x is 1 </#if> --------------------------------- <#if x 1>x is 1 <…...

element plus el-form自定义验证输入框为纯数字函数

element plus 的el-form 使用自定义验证器&#xff0c;验证纯数字&#xff0c;禁止输入小数、中文、字母、特殊符号。input的maxlength为最大输入多少位长度 效果图 <el-form ref"dataFormRef" :model"dataForm" :rules"dataRules" label-w…...

Android笔记(三十一):Deeplink失效问题

背景 通过deeplink启动应用之后&#xff0c;没关闭应用的情况下&#xff0c;再次使用deeplink会失效的问题&#xff0c;是系统bug导致的。此bug仅在某些设备&#xff08;Nexus 5X&#xff09;上重现&#xff0c;launchMode并且仅当应用程序最初通过深层链接启动并再次通过深层…...

图神经网络初步实验

实验复现来源 https://zhuanlan.zhihu.com/p/603486955 该文章主要解决问题&#xff1a; 1.加深对图神经网络数据集的理解 2.加深对图神经网络模型中喂数据中维度变化的理解 原理问题在另一篇文章分析&#xff1a; 介绍数据集&#xff1a;cora数据集 其中的主要内容表示为…...

创建线程时传递参数给线程

在C中&#xff0c;可以使用 std::thread 来创建和管理线程&#xff0c;同时可以通过几种方式将参数传递给线程函数。这些方法包括使用值传递、引用传递和指针传递。下面将对这些方法进行详细讲解并给出相应的代码示例。 1. 值传递参数 当你创建线程并希望传递参数时&#xff…...

兴业严选|美国总统都是不良资产出身 法拍市场是否将大众化

北京时间11月6日&#xff0c;特朗普赢得美国大选。 说起特朗普那就不得不提他的发家史&#xff0c;那可真是一笔笔不良资产投资堆出来的。 没错&#xff0c;特朗普就是处理不良资产的高手&#xff0c;战果丰硕。 改造斯威夫特小镇、 康莫德酒店、打造特朗普&#xff08;TRUM…...

C#-拓展方法

概念&#xff1a;为现有的非静态变量类型&#xff0c;添加方法 语法&#xff1a; 访问修饰符 static 返回值 函数名(this 拓展类名 参数名, 参数类型 参数名,参数类型 参数名....){} 而public static void F(this Console()){ }是错的。Console是静态类不可以为静态类添加方…...

加锁失效,非锁之过,加之错也|京东零售供应链库存研发实践

本文导读 从事京东零售供应链库存业务&#xff0c;库存数量操作增减十分频繁&#xff0c;并且项目开发中会常常遇到各种并发情况&#xff0c;一旦库存数量操作有误&#xff0c;势必给前台销售产生损失影响&#xff0c;因此需要关注对库存数量并发操作下的一致性问题。 大部分…...

vue3 传值的几种方式

一.父组件传子组件 父组件 //父组件 <Decisionobject :Decisionselected"Decisionselected"></Decisionobject> <script lang"ts" setup> let Decisionselected ref(false); </script>子组件 <script lang"ts" s…...

AUTOSAR CP NVRAM Manager规范导读

一、NVRAM Manager功能概述 NVRAM Manager是AUTOSAR(AUTomotive Open System ARchitecture)框架中的一个模块,负责管理非易失性随机访问存储器(NVRAM)。它提供了一组服务和API,用于在汽车环境中存储、维护和恢复NV数据。以下是NVRAM Manager的一些关键功能: 数据存储和…...

2024阿里云CTF Web writeup

《Java代码审计》http://mp.weixin.qq.com/s?__bizMzkwNjY1Mzc0Nw&mid2247484219&idx1&sn73564e316a4c9794019f15dd6b3ba9f6&chksmc0e47a67f793f371e9f6a4fbc06e7929cb1480b7320fae34c32563307df3a28aca49d1a4addd&scene21#wechat_redirect 前言 又是周末…...

软件著作权申请教程(超详细)(2024新版)软著申请

目录 一、注册账号与实名登记 二、材料准备 三、申请步骤 1.办理身份 2.软件申请信息 3.软件开发信息 4.软件功能与特点 5.填报完成 一、注册账号与实名登记 首先我们需要在官网里面注册一个账号&#xff0c;并且完成实名认证&#xff0c;一般是注册【个人】的身份。中…...

三维测量与建模笔记 - 3.2 直接线性变换法标定DLT

DLT - Direct Linear Transform 上图中&#xff0c;透视成像对应的公式是共线方程&#xff0c;可以参考以下链接&#xff1a; https://zhuanlan.zhihu.com/p/101549821https://zhuanlan.zhihu.com/p/101549821 对于标定来说&#xff0c;需要找到。已知量是。 (u,v)是…...

Whisper AI视频(音频)转文本

在信息化时代&#xff0c;如何高效处理丰富的音频和视频内容成为了一个重要课题。将这些内容转化为文本不仅能提高信息的可获取性&#xff0c;还能促进更广泛的传播。Whisper Desktop作为一款先进的语音识别工具&#xff0c;能够帮助用户轻松实现音频和视频的转文本功能。 什么…...

全网最详细RabbitMQ教学包括如何安装环境【RabbitMQ】RabbitMQ + Spring Boot集成零基础入门(基础篇)

目录 一、初始Rabbitmq1、什么是Rabbitmq&#xff0c;它的概述是什么&#xff1f;2、RabbitMQ的应用场景3、RabbitMQ主要组件4、RabbitMQ 的优点5、与其他消息队列性能比较 二、RabbitMQ环境安装初始化三、SpringAMQPRabbitMQ实战入门&#xff08;基本API&#xff09;1、实战入…...

esp32记录一次错误

报错信息 PS C:\XingNian\GeRen\4Gdownload\wireless-esp8266-dap> idf.py build Executing action: all (aliases: build) Running cmake in directory c:\xingnian\geren\4gdownload\wireless-esp8266-dap\build Executing "cmake -G Ninja -DPYTHON_DEPS_CHECKED1 …...

Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载

Moonshine 是由 Useful Sensors 公司推出的一系列「语音到文本&#xff08;speech-to-text, STT&#xff09;转换模型」&#xff0c;旨在为资源受限设备提供快速而准确的「自动语音识别&#xff08;ASR&#xff09;服务」。Moonshine 的设计特别适合于需要即时响应的应用场景&a…...

java-web-苍穹外卖-day1:软件开发步骤简化版+后端环境搭建

软件开发 感觉书本上和线上课程, 讲的太抽象, 不好理解, 但软件开发不就是为了开发应用程序吗?! 干嘛搞这么抽象,对吧, 下面个人对于软件开发的看法, 主打简单易懂, 当然,我一IT界小菜鸟, 对软件开发的认识也很浅显, 这个思维导图也仅仅是现阶段我的看法, 我以后会尽力…...

一个国产 API 开源项目,在 ProductHunt 杀疯了...

随着AI 大模型技术的兴起&#xff0c;全球产品更新和面市进程速度肉眼可见的加快&#xff0c;Product Hunt 作为全球知名的产品发现平台&#xff0c;每日都会精选出一系列产品能力强劲的新产品&#xff0c;这些产品不仅代表了技术前沿&#xff0c;还反映了市场的发展趋势。 上…...

斗破QT编程入门系列之二:认识Qt:编写一个HelloWorld程序(四星斗师)

斗破Qt目录&#xff1a; 斗破Qt编程入门系列之前言&#xff1a;认识Qt&#xff1a;Qt的获取与安装&#xff08;四星斗师&#xff09; 斗破QT编程入门系列之一&#xff1a;认识Qt&#xff1a;初步使用&#xff08;四星斗师&#xff09; 斗破QT编程入门系列之二&#xff1a;认识…...

木马病毒相关知识

1、 木马的定义 相当于一个远控程序&#xff08;一个控制端[hack]、一个被控端[受害端]&#xff09; 在计算机系统中&#xff0c;“特洛伊木马”指系统中被植入的、人为设计的程序&#xff0c;目的包括通过网终远程控制其他用户的计算机系统&#xff0c;窃取信息资料&#xff0…...

用 Python 写了一个天天酷跑(附源码)

Hello&#xff0c;大家好&#xff0c;给大家说一下&#xff0c;我要开始装逼了 这期写个天天酷跑玩一下叭&#xff01; 制作一个完整的“天天酷跑”游戏涉及很多方面&#xff0c;包括图形渲染、物理引擎、用户输入处理、游戏逻辑等。由于Python是一种高级编程语言&#xff0c;…...

【网络-交换机】生成树协议、环路检测

路由优先级 路由优先级决定了在多种可达的路由类型中&#xff0c;哪种路由将被用来转发数据包。路由优先级值越低&#xff0c;对应路由的优先级越高&#xff0c;优先级值255表示对应的路由不可达。一般情况下&#xff0c;静态路由的优先级为1&#xff0c;OSPF路由优先级为110&a…...

C++ 中的 JSON 序列化和反序列化:结构体与枚举类型的处理

在 C 编程中&#xff0c;处理 JSON 数据是一项常见任务&#xff0c;特别是在需要与其他系统或前端进行数据交换时。nlohmann::json 库是一个功能强大且易于使用的 JSON 库&#xff0c;它允许我们轻松地在 C 中进行 JSON 数据的序列化和反序列化。本文将详细介绍如何使用 nlohma…...

MySQL 批量删除海量数据的几种方法

目录 一、问题分析 二、批量删除海量数据的几种方法 方法 1&#xff1a;使用 LIMIT 分批删除 方法 2&#xff1a;通过主键范围分批删除 方法 3&#xff1a;通过自定义批量删除存储过程 方法 4&#xff1a;创建临时表替换旧表 三、性能优化建议 总结 在数据库的日常维护…...

【docker入门】docker的安装

目录 Centos 7 添加docker 官方仓库到yum源 将 Docker 的官方镜像源替换为国内可以的 Docker 镜像源 安装docker 配置docker加速源 Ubuntu 创建 gpg key 目录 下载 gpg key 添加国内可用镜像源到 系统的 APT 仓库中 安装docker 配置加速源 Centos 7 添加docker 官方仓…...

单例模式五种写法

饿汉式&#xff08;线程安全&#xff09; public class Singleton {// 直接创建实例&#xff0c;在类加载时就完成实例化private static final Singleton instance new Singleton();// 私有构造函数private Singleton() {}// 提供公共的静态方法获取实例public static Single…...

解析静态链接

文章目录 静态链接空间与地址分配相似段合并虚拟地址分配符号地址确定 符号解析与重定位链接器优化重复代码消除函数链接级别 静态库静态链接优缺点 静态链接 一组目标文件经过链接器链接后形成的文件即可执行文件&#xff0c;如果没有动态库的加入&#xff0c;那么这个可执行…...