深入探索 Seaborn:高级绘图的艺术与实践
引言
在数据科学领域,数据可视化是至关重要的一步。它不仅能够帮助我们更好地理解数据,还能有效地传达信息,支持决策过程。Seaborn 是一个基于 Matplotlib 的高级 Python 数据可视化库,它提供了许多高级绘图功能,使得数据可视化变得更加直观和美观。本文将带你深入了解 Seaborn 的高级绘图技术,从基础到进阶,再到实战案例,帮助你在数据可视化领域更上一层楼。
基础语法介绍
Seaborn 的核心概念
Seaborn 是一个高级的数据可视化库,它的设计目标是使数据可视化变得更加简单和美观。Seaborn 的核心概念包括以下几个方面:
- 数据集:Seaborn 支持多种数据结构,但最常用的是 Pandas DataFrame。它允许你以结构化的方式存储和操作数据。
- 图形类型:Seaborn 提供了多种图形类型,包括散点图、线图、直方图、箱形图、热力图等。
- 美学设置:Seaborn 提供了丰富的美学设置选项,如颜色、样式、标签等,使得图形更加美观。
基本语法规则
使用 Seaborn 进行绘图的基本步骤如下:
- 导入库:首先需要导入 Seaborn 和其他必要的库。
- 加载数据:通常使用 Pandas 加载数据。
- 选择图形类型:根据需求选择合适的图形类型。
- 设置美学参数:调整颜色、样式等参数。
- 绘制图形:调用 Seaborn 的绘图函数。
- 显示图形:使用 Matplotlib 的
plt.show()函数显示图形。
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd# 加载数据
data = pd.read_csv('your_data.csv')# 绘制散点图
sns.scatterplot(x='x_column', y='y_column', data=data)# 显示图形
plt.show()
基础实例
问题描述
假设我们有一个包含用户年龄和收入的数据集,我们希望绘制一个散点图来观察年龄和收入之间的关系。
代码示例
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd# 加载数据
data = pd.DataFrame({'Age': [25, 30, 35, 40, 45, 50, 55, 60],'Income': [50000, 60000, 70000, 80000, 90000, 100000, 110000, 120000]
})# 绘制散点图
sns.scatterplot(x='Age', y='Income', data=data)# 设置标题和标签
plt.title('Age vs Income')
plt.xlabel('Age')
plt.ylabel('Income')# 显示图形
plt.show()
进阶实例
问题描述
在实际应用中,数据往往更加复杂。假设我们有一个包含用户年龄、收入和性别的数据集,我们希望绘制一个带有性别分类的散点图,并添加回归线来观察年龄和收入之间的关系。
高级代码实例
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd# 加载数据
data = pd.DataFrame({'Age': [25, 30, 35, 40, 45, 50, 55, 60, 25, 30, 35, 40, 45, 50, 55, 60],'Income': [50000, 60000, 70000, 80000, 90000, 100000, 110000, 120000, 55000, 65000, 75000, 85000, 95000, 105000, 115000, 125000],'Gender': ['Male', 'Male', 'Male', 'Male', 'Male', 'Male', 'Male', 'Male', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female']
})# 绘制带有性别分类的散点图
sns.scatterplot(x='Age', y='Income', hue='Gender', data=data)# 添加回归线
sns.lmplot(x='Age', y='Income', hue='Gender', data=data)# 设置标题和标签
plt.title('Age vs Income by Gender')
plt.xlabel('Age')
plt.ylabel('Income')# 显示图形
plt.show()
实战案例
问题描述
在一次金融数据分析项目中,我们需要分析不同地区的贷款违约率,并可视化这些数据以帮助管理层做出决策。
解决方案
我们将使用 Seaborn 的热力图来展示不同地区的贷款违约率。热力图可以清晰地展示二维数据的分布情况,非常适合这种场景。
代码实现
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd# 加载数据
data = pd.DataFrame({'Region': ['North', 'South', 'East', 'West'],'Default_Rate': [0.05, 0.03, 0.07, 0.04]
})# 创建一个地区和违约率的交叉表
pivot_table = data.pivot(index='Region', columns='Default_Rate', values='Default_Rate')# 绘制热力图
sns.heatmap(pivot_table, annot=True, cmap='coolwarm')# 设置标题和标签
plt.title('Loan Default Rate by Region')
plt.xlabel('Default Rate')
plt.ylabel('Region')# 显示图形
plt.show()
扩展讨论
Seaborn 的优势
- 易用性:Seaborn 的 API 设计简洁明了,使得初学者也能快速上手。
- 美观性:Seaborn 提供了丰富的美学设置选项,使得图形更加美观。
- 高级功能:Seaborn 支持多种高级图形类型,如热力图、箱形图、小提琴图等,满足各种数据可视化需求。
Seaborn 的局限性
- 性能问题:对于大规模数据集,Seaborn 的性能可能会受到影响。
- 自定义能力:虽然 Seaborn 提供了许多美学设置选项,但在某些情况下,可能需要更细粒度的控制,这时可以考虑使用 Matplotlib。
未来发展方向
随着数据科学的不断发展,Seaborn 也在不断进化。未来的发展方向可能包括:
- 性能优化:提高对大规模数据集的支持。
- 新图形类型:引入更多高级图形类型,满足更广泛的需求。
- 交互式可视化:支持更多的交互式功能,提升用户体验。
结语
通过本文的介绍,相信你已经对 Seaborn 的高级绘图技术有了更深入的了解。无论是基础的散点图,还是复杂的热力图,Seaborn 都能帮助你轻松实现。希望你在未来的数据可视化项目中,能够充分利用 Seaborn 的强大功能,创造出更多令人惊艳的图形。
相关文章:
深入探索 Seaborn:高级绘图的艺术与实践
引言 在数据科学领域,数据可视化是至关重要的一步。它不仅能够帮助我们更好地理解数据,还能有效地传达信息,支持决策过程。Seaborn 是一个基于 Matplotlib 的高级 Python 数据可视化库,它提供了许多高级绘图功能,使得…...
《现代工业经济和信息化》是什么级别的期刊?是正规期刊吗?能评职称吗?
问题解答: 问:《现代工业经济和信息化》是不是核心期刊? 答:不是,是知网收录的正规学术期刊。 问:《现代工业经济和信息化》级别? 答:省级。主管单位:山西省工业和…...
【TS】九天学会TS语法——2.TypeScript基本类型及变量声明
今天学习的内容是TypeScript 基本类型,包括 number, string, boolean, any, void 等,以及变量声明的方式和区别。 基本类型介绍变量声明(var, let, const)类型注解 开始学习 目录 引言 一、基本类型介绍 二、变量声明 1.概念解析 …...
html+js+css实现拖拽式便签留言
前些日子在网上冲浪时,看到一个便签式留言墙,让人耳目一新。心想这个看着不错,额想要。于是便开始搜寻是否有相应开源插件,想将其引入自己的博客中。但是搜寻了一圈,都没有符合预期的,要么功能不符合。有的功能符合&am…...
Redis原理篇——Redis数据结构
Redis原理篇 1、原理篇-Redis数据结构 1.1 Redis数据结构-动态字符串 我们都知道Redis中保存的Key是字符串,value往往是字符串或者字符串的集合。可见字符串是Redis中最常用的一种数据结构。 不过Redis没有直接使用C语言中的字符串,因为C语言字符串存…...
pdf文件预览和导出
抢先观看: window.URL.createObjectURL(): 用于根据传入的 Blob 对象或 File 对象生成一个临时的、可访问的 URL,仅在浏览器会话中有效,并且不会上传到服务器。 const url window.URL.createObjectURL(blob);Blob 对象: 是 …...
服务器数据恢复—RAID5阵列硬盘坏道掉线导致存储不可用的数据恢复案例
服务器存储数据恢复环境: 一台EqualLogic存储中有一组由16块SAS硬盘组建的RAID5阵列。上层划分了4个卷,采用VMFS文件系统,存放虚拟机文件。 服务器存储故障: 存储RAID5阵列中磁盘出现故障,有2块硬盘对应的指示灯亮黄灯…...
快速傅里叶变换(FFT)基础(附python实现)
对于非专业人士,傅里叶变换一直是一个神秘的武器,它可以分析出不同频域的信息,从时域转换到频域,揭示了信号的频率成分,对于数字信号处理(DSP)、图像、语音等数据来说,傅里叶变换是最…...
使用Docker-compose安装mysql5.7
1.首先选择一个目录用来存放docker-compse文件以及mysql的数据(例如logs、conf) cd /home mkdir mysql vi docker-compose.yml2.填写docker-compse.yml内容 version : 3 services:mysql:# 容器名(以后的控制都通过这个)container_name: mysql# 重启策略…...
如何管理PHP的API部署环境
管理PHP的API部署环境是一个涉及多个步骤和考虑因素的过程。以下是一些关键步骤和最佳实践,用于管理PHP的API部署环境: 一、选择合适的服务器和配置环境 选择服务器:根据API的访问量和性能需求,选择合适的服务器。可以选择物理服…...
web——sqliabs靶场——第一关
今天开始搞这个靶场,从小白开始一点点学习,加油!!!! 1.搭建靶场 注意点:1.php的版本问题,要用老版本 2.小p要先改数据库的密码,否则一直显示链接不上数据库 2.第一道题࿰…...
tartanvo ubuntu 20.04部署
1. 所有环境安装流程参考 2. 运行python3 tartanvo_node.py出现问题: ImportError: cannot import name int from numpy版本问题,卸载当前版本并更换版本: pip uninstall numpy pip install numpy1.22.4问题解决。 3. 采用2to3脚本将其代…...
SpringBoot整合Freemarker(三)
定义循环输出的宏 <#macro list title items> ${title?cap_first}:<#list items as x>*${x?cap_first}</#list> </#macro><list items["mouse", "elephant", "python"] title"Animals"/> 输出结果…...
Android 一个APP打开另一个app的两种方式,需添加QUERY_ALL_PACKAGES权限
加<uses-permission android:name"android.permission.QUERY_ALL_PACKAGES"/> 方式1:打开外部app,在新窗口打开。 private void doStartAppPackageName(String packagename) { // 通过包名获取此APP详细信息&#x…...
<数据集>草莓叶片病害识别数据集<目标检测>
数据集格式:VOCYOLO格式 图片数量:4371张 标注数量(xml文件个数):4371 标注数量(txt文件个数):4371 标注类别数:7 标注类别名称:[Angular Leafspot, Anthracnose Fruit Rot, Blossom Blight, Gray Mol…...
React 中 `key` 属性的警告及其解决方案
React 中 key 属性的警告及其解决方案 文章目录 React 中 key 属性的警告及其解决方案1. 引言2. 什么是 key 属性3. key 属性的重要性4. 常见的 key 属性警告及其原因4.1 缺少 key 属性4.2 使用不稳定的 key(如索引)4.3 重复的 key 值 5. 如何解决 key 属…...
OpenHarmony4.1蓝牙芯片如何适配?触觉智能RK3568主板SBC3568演示
当打开蓝牙后没有反应时,需要排查蓝牙节点是否对应、固件是否加载成功,本文介绍开源鸿蒙OpenHarmony4.1系统下适配蓝牙的方法,触觉智能SBC3568主板演示 修改对应节点 开发板蓝牙硬件连接为UART1,修改对应的节点,路径为…...
濮良贵《机械设计》第十版课后习题答案全解PDF电子版
《机械设计》(第十版)是“十二五”普通高等教育本科国家级规划教材, 是在《机械设计》(第九版)的基础上修订而成的。本次修订主要做了以下几项工作: 1. 内容的适当更新——自本书第九版出版以来, 机械工程及相关领域的新理论、新技术和新标准…...
Python进阶语法探索:列表推导式
在Python编程中,列表推导式(List Comprehensions)是一种简洁而强大的语法结构,它允许你以一行代码的形式创建列表,同时执行循环、条件判断等操作。列表推导式不仅提高了代码的可读性,还显著提升了编程效率。…...
java合并图片与文字
通过java来绘制海报,加载外部字体并设置样式大小与加粗、设置背景图、合并图片,下面是示例 import javax.imageio.ImageIO; import java.awt.Color; import java.awt.Font; import java.awt.FontMetrics; import java.awt.Graphics2D; import java.awt.…...
铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...
【C++特殊工具与技术】优化内存分配(一):C++中的内存分配
目录 一、C 内存的基本概念 1.1 内存的物理与逻辑结构 1.2 C 程序的内存区域划分 二、栈内存分配 2.1 栈内存的特点 2.2 栈内存分配示例 三、堆内存分配 3.1 new和delete操作符 4.2 内存泄漏与悬空指针问题 4.3 new和delete的重载 四、智能指针…...
【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...
免费数学几何作图web平台
光锐软件免费数学工具,maths,数学制图,数学作图,几何作图,几何,AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...
go 里面的指针
指针 在 Go 中,指针(pointer)是一个变量的内存地址,就像 C 语言那样: a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10,通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...
PydanticAI快速入门示例
参考链接:https://ai.pydantic.dev/#why-use-pydanticai 示例代码 from pydantic_ai import Agent from pydantic_ai.models.openai import OpenAIModel from pydantic_ai.providers.openai import OpenAIProvider# 配置使用阿里云通义千问模型 model OpenAIMode…...
2025.6.9总结(利与弊)
凡事都有两面性。在大厂上班也不例外。今天找开发定位问题,从一个接口人不断溯源到另一个 接口人。有时候,不知道是谁的责任填。将工作内容分的很细,每个人负责其中的一小块。我清楚的意识到,自己就是个可以随时替换的螺丝钉&…...
