当前位置: 首页 > news >正文

2024年11月8日day8

半加器和全加器的区别
  • 半加器:只能处理两个二进制位的相加,无法处理进位。
  • 全加器:不仅能处理两个二进制位的相加,还能处理来自低位的进位。

⑴ 完成满足754标准存储格式的浮点数((43940000)16的十进制数值)

步骤1:理解IEEE 754标准

IEEE 754标准是一种广泛使用的浮点数表示方法,它规定了浮点数的存储格式。一个32位的浮点数(单精度)由三部分组成:

  • 符号位(1位):0表示正数,1表示负数。
  • 指数部分(8位):采用偏移量127的二进制指数表示。
  • 尾数部分(23位):表示有效数字,隐含了一个前导的1。

步骤2:将十六进制数转换为二进制数

给定的十六进制数是43940000。

  • 4 = 0100
  • 3 = 0011
  • 9 = 1001
  • 4 = 0100
  • 0000 = 0000 0000 0000

组合起来得到:0100 0011 1001 0100 0000 0000 0000 0000

步骤3:解析二进制数

  • 符号位:0(正数)
  • 指数部分:0100 0011(67)
  • 尾数部分:1001 0100 0000 0000 0000 000(隐含前导1)

步骤4:计算十进制值

  • 指数值:67 - 127 = -60(因为偏移量是127)
  • 尾数值:1.10010100000000000000000(二进制)

将尾数值转换为十进制:

1 + (1/2) + (0/4) + (1/8) + (0/16) + (1/32) + (0/64) + (0/128) + (0/256) + ... = 1.625

因此,浮点数表示的十进制值为:

1.625×2−60

⑵ 将十进制数-30/8转换成754标准32位浮点数的二进制存储格式

步骤1:计算十进制数的值

-30/8 = -3.75

步骤2:确定符号位

因为数值是负数,所以符号位为1。

步骤3:计算二进制表示

-3.75的整数部分和小数部分分别转换为二进制:

  • 整数部分:-3 = -(1 + 1 + 1) = -(111)2 = ...1111(补码表示,需要取反加1)
  • 小数部分:0.75 = 0.5 + 0.25 = 1/2 + 1/4 = (0.11)2

组合起来得到:-3.75 = -(11.11)2 = ...100.11(补码表示)

取反加1得到补码:

111.11 -> 000.00(取反)-> 000.01(加1)-> ...111.11(补码,实际存储)

步骤4:规格化

将补码表示的二进制数规格化为1.xxx形式,并计算指数:

1.1111(隐含前导1)

指数:从原点到第一个非零位(向左移动了3位),所以指数为-3。

步骤5:计算偏移后的指数

偏移后的指数 = -3 + 127 = 124

步骤6:组合成IEEE 754格式

  • 符号位:1
  • 指数部分:124(二进制0111 1100)
  • 尾数部分:11110000000000000000000(规格化后的尾数,23位)

组合起来得到:1 01111100 11110000000000000000000

步骤7:转换为十六进制表示

1 01111100 11110000000000000000000 -> C1F80000(十六进制)

因此,-30/8的IEEE 754标准32位浮点数二进制存储格式为C1F80000(十六进制)。

相关文章:

2024年11月8日day8

半加器和全加器的区别 半加器:只能处理两个二进制位的相加,无法处理进位。全加器:不仅能处理两个二进制位的相加,还能处理来自低位的进位。 ⑴ 完成满足754标准存储格式的浮点数((43940000)16的十进制数值&#xff09…...

Debezium系列之:Debezium3版本增量快照和只读增量快照应用的变化

Debezium系列之:Debezium3版本增量快照和只读增量快照应用的变化 一、需求背景二、基于数据库信号表使用增量快照案例三、基于Kafka信号Topic使用增量快照案例四、只读增量快照案例五、增量快照技术总结增量快照相关知识请阅读博主下面系列文章: Debezium系列之:实现增量快照…...

Python正则表达式1 re.match惰性匹配详解案例

点个关注 re.match() re.match() 函数尝试从字符串的开头开始匹配一个模式,如果匹配成功,返回一个匹配成功的对象,否则返回None。大小写区分,内容匹配不到后面的,只能匹配一个,不能有空格(开头匹配&#…...

WPF(C#)学习日志10:Prism框架下按键绑定

在Prism框架下&#xff0c;提供了DelegateCommand类用于处理了UI的按键请求&#xff0c;XAML中可以直接采用 Command"{Binding **}" 来绑定这些方法。这个类是一个泛型的类生命时仅需要DelegateCommand<T>即可&#xff0c;同时在XAML中绑定CommandParameter&qu…...

WPF中的ResizeMode

在 WPF (Windows Presentation Foundation) 中&#xff0c;ResizeMode 属性用于指定窗口是否可以被用户调整大小&#xff0c;以及如何调整大小。ResizeMode 属性可以设置为以下几个值之一&#xff1a; NoResize&#xff1a;窗口不能被用户调整大小&#xff0c;但可以被程序代码…...

Unity3D UI 双击和长按

Unity3D 实现 UI 元素双击和长按功能。 UI 双击和长按 上一篇文章实现了拖拽接口&#xff0c;这篇文章来实现 UI 的双击和长按。 双击 创建脚本 UIDoubleClick.cs&#xff0c;创建一个 Image&#xff0c;并把脚本挂载到它身上。 在脚本中&#xff0c;继承 IPointerClickHa…...

LabVIEW扫描探针显微镜系统

开发了一套基于LabVIEW软件开发的扫描探针显微镜系统。该系统专为微观尺度材料的热性能测量而设计&#xff0c;特别适用于纳米材料如石墨烯、碳纳米管等的研究。系统通过LabVIEW编程实现高精度的表面形貌和热性能测量&#xff0c;广泛应用于科研和工业领域。 项目背景 随着纳…...

问题式教学法在生物教学中的应用探索

问题式教学法在生物教学中的应用探索 李新 山东省德州市平原县第五中学 山东 德州 253100 摘要&#xff1a;时代在发展教育事业也在不断进步&#xff0c;不断创新教学方法有利于提高教学质量。问题教学法能让教材知识点以问题的形式呈现在学生眼前&#xff0c;这对引导学生…...

C++ | Leetcode C++题解之第556题下一个更大元素III

题目&#xff1a; 题解&#xff1a; class Solution { public:int nextGreaterElement(int n) {int x n, cnt 1;for (; x > 10 && x / 10 % 10 > x % 10; x / 10) {cnt;}x / 10;if (x 0) {return -1;}int targetDigit x % 10;int x2 n, cnt2 0;for (; x2 …...

实现链式结构二叉树

目录 需要实现的操作 链式结构二叉树实现 结点的创建 前序遍历 中序遍历 后序遍历 计算结点个数 计算二叉树的叶子结点个数 计算二叉树第k层结点个数 计算二叉树的深度 查找值为x的结点 销毁 层序遍历 判断是否为完全二叉树 总结 需要实现的操作 //前序遍历 void …...

在vscode中如何利用git 查看某一个文件的提交记录

在 Visual Studio Code (VSCode) 中&#xff0c;你可以使用内置的 Git 集成来查看某个文件的提交历史。以下是具体步骤&#xff1a; 使用 VSCode 内置 Git 功能 打开项目&#xff1a; 打开你的项目文件夹&#xff0c;确保该项目已经是一个 Git 仓库&#xff08;即项目根目录下…...

【ShuQiHere】️`adb kill-server` 和 `adb start-server` 命令的作用

&#x1f4df;&#x1f527; 【ShuQiHere】️ &#x1f527;&#x1f4df; 在使用 scrcpy 或其他依赖于 ADB&#xff08;Android Debug Bridge&#xff09; 的工具时&#xff0c;您可能会遇到需要重启 ADB 服务器的情况。今天&#xff0c;我们将详细解释两个常用的 ADB 命令&a…...

植物明星大乱斗1

能帮到你的话&#xff0c;就给个赞吧 &#x1f618; 文章目录 scene.hmenuScene.hgameScene.hmainscene.cppmenuScene.cppgameScene.cpp scene.h #pragma once #include <graphics.h>/* 场景菜单角色选择游戏 */ class Scene { public:virtual ~Scene() 0; public:virt…...

信息安全工程师(84)UNIX/Linux操作系统安全分析与防护

前言 UNIX/Linux操作系统&#xff0c;尤其是Linux&#xff0c;以其开放性、稳定性和安全性在服务器、桌面、嵌入式设备和超级计算机中占据重要地位。然而&#xff0c;没有任何操作系统可以百分之百地保证安全&#xff0c;UNIX/Linux也不例外。 一、UNIX/Linux操作系统安全分析 …...

全面解析 Python typing模块与静态类型注解:从基础到高级

在现代软件开发中&#xff0c;代码的可读性、维护性和可靠性至关重要。Python 作为一门动态类型语言&#xff0c;尽管灵活&#xff0c;但也可能带来一些类型上的困扰。Python 的 typing 模块和静态类型注解提供了一种在编写代码时明确类型信息的方法&#xff0c;从而提升代码质…...

Jekins篇(搭建/安装/配置)

目录 一、环境准备 1. Jenkins安装和持续集成环境配置 2. 服务器列表 3. 安装环境 Jekins 环境 4. JDK 环境 5. Maven环境 6. Git环境 方法一&#xff1a;yum安装 二、JenKins 安装 1. JenKins 访问 2. jenkins 初始化配置 三、Jenkins 配置 1. 镜像配置 四、Mave…...

【工具变量】排污权交易政策试点DID(2000-2023)

数据简介&#xff1a;在过去几十年间的“高增长、高能耗、高污染”的经济发展背景下&#xff0c;随着社会各界不断反应高经济增长背后付出的巨大环境代价&#xff0c;中国ZF将节能环保减排纳入长期规划治理中。在2007年&#xff0c;我国开始启动了二氧化硫&#xff08;SO2&…...

Proteus中数码管动态扫描显示不全(已解决)

文章目录 前言解决方法后记 前言 我是直接把以前写的 51 数码管程序复制过来的&#xff0c;当时看的郭天祥的视频&#xff0c;先送段选&#xff0c;消隐后送位选&#xff0c;最后来个 1ms 的延时。 代码在 Proteus 中数码管静态是可以的&#xff0c;动态显示出了问题——显示…...

证件照尺寸168宽240高,如何手机自拍更换蓝底

在提供学籍照片及一些社会化考试报名时&#xff0c;会要求我们提供尺寸为168*240像素的电子版证件照&#xff0c;本文将介绍如何使用“报名电子照助手”&#xff0c;借助手机拍照功能完成证件照的拍摄和背景更换&#xff0c;特别是如何将照片尺寸调整为168像素宽和240像素高&am…...

力扣.167 两数之和 II two-sum-ii

数组系列 力扣数据结构之数组-00-概览 力扣.53 最大子数组和 maximum-subarray 力扣.128 最长连续序列 longest-consecutive-sequence 力扣.1 两数之和 N 种解法 two-sum 力扣.167 两数之和 II two-sum-ii 力扣.170 两数之和 III two-sum-iii 力扣.653 两数之和 IV two-…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...