当前位置: 首页 > news >正文

OPENCV 检测直线[opencv--3]

opencv中集成了很多好用的函数,比如霍夫变换检测直线的函数,当然,考虑到看我文章的人水平,我这里只讲讲如何使用这个函数,和怎么调节其中的参数

先把运行效果PO出来吧
在这里插入图片描述

#include "CV_ERROR.h"
#include "MCV_funs.hpp"#include <opencv2/opencv.hpp>
#include <iostream>int main() {cv::utils::logging::setLogLevel(cv::utils::logging::LOG_LEVEL_ERROR);// 读取PNG图像//cv::Mat image = cv::imread("lines.png", cv::IMREAD_COLOR);cv::Mat image = cv::imread("PIC.jpg", cv::IMREAD_COLOR);if (image.empty()) {std::cerr << "无法读取图像文件" << std::endl;return -1;}showimageWin(image);// 转换为灰度图像cv::Mat gray;cv::cvtColor(image, gray, cv::COLOR_BGR2GRAY);// 应用边缘检测(Canny)cv::Mat edges;cv::Canny(gray, edges, 150, 200, 3);showimageWin(edges);// 使用霍夫变换检测直线std::vector<cv::Vec2f> lines;cv::HoughLines(edges, lines, 0.5, CV_PI / 360, 200);// 在原图上绘制检测到的直线cv::Mat result = image.clone();for (size_t i = 0; i < lines.size(); i++) {float rho = lines[i][0], theta = lines[i][1];cv::Point pt1, pt2;double a = cos(theta), b = sin(theta);double x0 = a * rho, y0 = b * rho;pt1.x = cvRound(x0 + 1000 * (-b));pt1.y = cvRound(y0 + 1000 * (a));pt2.x = cvRound(x0 - 1000 * (-b));pt2.y = cvRound(y0 - 1000 * (a));cv::line(result, pt1, pt2, cv::Scalar(0, 255, 0), 15, cv::LINE_AA);}// 显示结果图像showimageWin(result);cv::waitKey();return 0;
}

下面是原理类的讲解,本鼠懒得重复做笔记了,直接PO在下面吧ψ(`∇´)ψ
在这里插入图片描述

相关文章:

OPENCV 检测直线[opencv--3]

opencv中集成了很多好用的函数&#xff0c;比如霍夫变换检测直线的函数&#xff0c;当然&#xff0c;考虑到看我文章的人水平&#xff0c;我这里只讲讲如何使用这个函数&#xff0c;和怎么调节其中的参数 先把运行效果PO出来吧 #include "CV_ERROR.h" #include &q…...

FFmpeg 4.3 音视频-多路H265监控录放C++开发十三.2:avpacket中包含多个 NALU如何解析头部分析

前提&#xff1a; 注意的是&#xff1a;我们这里是从avframe转换成avpacket 后&#xff0c;从avpacket中查看NALU。 在实际开发中&#xff0c;我们有可能是从摄像头中拿到 RGB 或者 PCM&#xff0c;然后将pcm打包成avframe&#xff0c;然后将avframe转换成avpacket&#xff0…...

【MATLAB】目标检测初探

文章目录 0 前言1 目标检测概述2 算法实践2.1 YOLO v22.2 YOLO v3 3 项目实践3.1 项目背景和数据集3.2 实践结果3.3 算法对比 4 工具箱与数据标注5 总结 0 前言 之前因为项目原因&#xff0c;做了一个基于YOLOv5实现目标检测的程序&#xff0c;是基于Python做的&#xff0c;直接…...

SpringCloud 微服务消息队列灰度方案 (RocketMQ 4.x)

目录 背景遇到的问题 RocketMQ 基础基础消息模型扩展后的消息模型部署模型相关概念点 方案对比影子Topic的方案Tag的方案UserProperty的方案影子Group的方案灰度分区的方案方案对比 灰度分区方案设计适配只有部分灰度的情况所做的功能扩展消费者&#xff08;无灰度&#xff09;…...

厘清标准差和标准误:因果推断的统计学基础

标准差&#xff0c;指 一次抽样中 个体取值间的离散程度&#xff0c;反映了 个体取值对样本均值的代表性。 标准误&#xff0c;指 多次抽样中 样本均值间的离散程度&#xff0c;反映了 样本均值对总体均值的代表性。 公众号原文-厘清标准差和标准误&#xff1a;因果推断的统计…...

GESP4级考试语法知识(贪心算法(二))

排队接水2代码&#xff1a; #include<iostream> #include<cstdio> #include<algorithm> using namespace std; struct people {int num;int time; }; people s[1001]; int n,r,a[1001]; double sum,ave; bool cmp(people x,people y) {return x.time<y.t…...

MATLAB 使用教程 —— 命令窗口输入命令,工作区显示变量

命令在命令窗口输入变量在工作区显示 MATLAB 桌面包含的面板如下&#xff1a; 当前文件夹 - 此面板允许访问项目文件夹和文件。命令窗口 - 这是主要区域&#xff0c;用户在命令行中输入命令&#xff0c;命令提示符(>>).工作区 - 工作区显示所有变量&#xff0c;无论是创…...

LeetCode 热题100(八)【二叉树】(3)

目录 8.11二叉树展开为链表&#xff08;中等&#xff09; 8.12从前序与中序遍历序列构造二叉树&#xff08;中等&#xff09; 8.13路径总和III&#xff08;中等&#xff09; 8.14二叉树的最近公共祖先&#xff08;中等&#xff09; 8.15二叉树中的最大路径和&#xff08;困…...

uniapp h5实现录音

使用npm安装 npm install recorder-core引入Recorder库 可以使用import、require、html script等你适合的方式来引入js文件&#xff0c;下面的以import为主要参考&#xff0c;其他引入方式根据文件路径自行调整一下就可以了。 //必须引入的Recorder核心&#xff08;文件路径是…...

字节跳动Android面试题汇总及参考答案(80+面试题,持续更新)

Android 四大组件是什么? Android 四大组件分别是 Activity、Service、Broadcast Receiver 和 Content Provider。 Activity 是 Android 应用中最基本的组件,用于实现用户界面。它可以包含各种视图控件,如按钮、文本框等。一个 Activity 通常对应一个屏幕的内容。用户可以通…...

【go从零单排】通道select、通道timeout、Non-Blocking Channel Operations非阻塞通道操作

&#x1f308;Don’t worry , just coding! 内耗与overthinking只会削弱你的精力&#xff0c;虚度你的光阴&#xff0c;每天迈出一小步&#xff0c;回头时发现已经走了很远。 &#x1f4d7;概念 select 语句是 Go 的一种控制结构&#xff0c;用于等待多个通道操作。它类似于 s…...

PSRR仿真笔记

1.首先打开bandgap的testbench电路&#xff0c;选择schematic 2.打开电路后,选择VDD模块&#xff0c;然后按键盘Q&#xff0c;进行编辑&#xff0c;将AC magnitude改为1 V 3.修改完成后&#xff0c;点击左上角Launch > ADE Explorer 4.在出现的窗口中&#xff0c;选择Creat…...

AUTOSAR_EXP_ARAComAPI的7章笔记(3)

☞返回总目录 相关总结&#xff1a;AutoSar AP简单多绑定总结 7.3 多绑定 如在 5.4.3 小节中简要讨论的&#xff0c;某个代理类 / 骨架类的不同实例之间的技术传输是不同的&#xff0c;多绑定描述了这种情况的解决方案。多种技术原因都可能导致这种情况出现&#xff1a; 代…...

WSADATA 关键字详细介绍

WSADATA 是 Windows Sockets API&#xff08;Winsock&#xff09;中用于存储 Winsock 库的初始化信息的结构体。在使用 Winsock API 之前&#xff0c;必须通过调用 WSAStartup() 函数进行初始化&#xff0c;WSADATA 结构体用于接收有关 Winsock 库版本的信息。Winsock 是 Windo…...

Day44 | 动态规划 :状态机DP 买卖股票的最佳时机IV买卖股票的最佳时机III

Day44 | 动态规划 &#xff1a;状态机DP 买卖股票的最佳时机IV&&买卖股票的最佳时机III&&309.买卖股票的最佳时机含冷冻期 动态规划应该如何学习&#xff1f;-CSDN博客 本次题解参考自灵神的做法&#xff0c;大家也多多支持灵神的题解 买卖股票的最佳时机【…...

Area-Composition模型部署指南

一、介绍 本模型可以通过输入不同的提示词&#xff0c;然后根据各部分提示词进行融合生成图片。如下图&#xff1a; 此图像包含 4 个不同的区域&#xff1a;夜晚、傍晚、白天、早晨 二、部署 环境要求&#xff1a; 最低显存&#xff1a;10G 1. 部署ComfyUI 本篇的模型部署…...

策略模式、状态机详细解读

策略模式 (Strategy Pattern) 策略模式 (Strategy Pattern) 是一种行为型设计模式&#xff0c;旨在将一组算法封装成独立的类&#xff0c;使得它们可以相互替换。这种模式让算法的变化不会影响到使用算法的客户&#xff0c;减少了类之间的耦合。策略模式通常用于处理一类问题&…...

OpenWrt广播DNS到客户端

OpenWrt广播DNS到客户端 Network -> Interfaces -> lan ->DHCP Server -> Advanced Settings -> DHCP-Options 设置 6,dns1,dns2 如下图 也可以直接编辑 /etc/config/dhcp config dhcp lan list dhcp_option 6,119.29.29.29,223.5.5.5 #ipv4 option dns 2402:4…...

C++编程技巧与规范-类和对象

类和对象 1. 静态对象的探讨与全局对象的构造顺序 静态对象的探讨 类中的静态成员变量(类类型静态成员) 类中静态变量的声明与定义&#xff08;类中声明类外定义&#xff09; #include<iostream> using namespace std;namespace _nmspl {class A{public:A():m_i(5){…...

AutoHotKey自动热键AHK-正则表达式

在这个软件的操作中,基本都是需要即时的解决一些问题,所以对字符串的操作是比较多的,所以正则的使用还是比较重要的,接下来我们用一个例子来了解正则表达式的使用 str "7654321" RegExMatch(str, "65(43)(21)", SubPat)str ( str %str% SubPat %SubPa…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

MySQL账号权限管理指南:安全创建账户与精细授权技巧

在MySQL数据库管理中&#xff0c;合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号&#xff1f; 最小权限原则&#xf…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...