当前位置: 首页 > news >正文

协方差矩阵及其计算方法

协方差矩阵(Covariance Matrix)是一个描述多维数据特征之间相互关系的矩阵,广泛应用于统计学和机器学习中。它用于表示各个特征之间的协方差,是分析多维数据分布和特征依赖性的重要工具。

什么是协方差矩阵?

协方差矩阵是一个方阵,其每个元素 σ i j \sigma_{ij} σij 代表第 i i i 个特征与第 j j j 个特征之间的协方差。协方差本质上是衡量两个变量是否相关以及它们的相关程度:

  • 如果协方差为正,说明这两个特征具有正相关关系,即当一个特征增大时,另一个特征也倾向于增大。
  • 如果协方差为负,说明这两个特征具有负相关关系,即当一个特征增大时,另一个特征倾向于减小。
  • 如果协方差接近零,说明这两个特征之间几乎没有线性关系。

协方差矩阵是一个对称矩阵,因为 σ i j = σ j i \sigma_{ij} = \sigma_{ji} σij=σji。协方差矩阵的对角线元素是每个特征的方差,而非对角线元素则是特征之间的协方差。

协方差矩阵的计算

假设我们有一个包含 n n n 个样本和 m m m 个特征的数据集 X \mathbf{X} X,其中每个样本 x i = ( x i 1 , x i 2 , … , x i m ) \mathbf{x_i} = (x_{i1}, x_{i2}, \dots, x_{im}) xi=(xi1,xi2,,xim) 是一个 m m m-维向量。为了计算协方差矩阵,我们通常按照以下步骤操作:

1. 计算每个特征的均值

首先,计算每个特征的均值。假设数据集的第 i i i 列是特征 x i x_i xi,其均值 x i ˉ \bar{x_i} xiˉ 为:

x i ˉ = 1 n ∑ k = 1 n x k i \bar{x_i} = \frac{1}{n} \sum_{k=1}^{n} x_{ki} xiˉ=n1k=1nxki

2. 中心化数据

对于每个特征,减去该特征的均值,得到中心化的数据:

x k i ′ = x k i − x i ˉ x_{ki}^\prime = x_{ki} - \bar{x_i} xki=xkixiˉ

3. 计算协方差矩阵

协方差矩阵的元素 σ i j \sigma_{ij} σij 代表第 i i i 个特征与第 j j j 个特征之间的协方差,计算公式如下:

σ i j = 1 n − 1 ∑ k = 1 n ( x k i ′ ) ( x k j ′ ) \sigma_{ij} = \frac{1}{n-1} \sum_{k=1}^{n} (x_{ki}^\prime)(x_{kj}^\prime) σij=n11k=1n(xki)(xkj)

协方差矩阵是对称的,因此计算出来的矩阵是一个 m × m m \times m m×m 的对称矩阵,其中对角线上的元素是特征的方差,非对角线元素是特征之间的协方差。

协方差矩阵的示例

假设我们有以下数据集,其中每行表示一个样本,每列表示一个特征:

X = ( 1 2 2 3 3 4 4 5 ) \mathbf{X} = \begin{pmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 4 \\ 4 & 5 \end{pmatrix} X= 12342345

这是一个包含 4 个样本和 2 个特征的数据集,特征分别为 “特征 1” 和 “特征 2”。

第一步:计算每个特征的均值
  • 对于特征 1:
    x 1 ˉ = 1 + 2 + 3 + 4 4 = 2.5 \bar{x_1} = \frac{1 + 2 + 3 + 4}{4} = 2.5 x1ˉ=41+2+3+4=2.5

  • 对于特征 2:
    x 2 ˉ = 2 + 3 + 4 + 5 4 = 3.5 \bar{x_2} = \frac{2 + 3 + 4 + 5}{4} = 3.5 x2ˉ=42+3+4+5=3.5

第二步:中心化数据

将每个特征的均值从每个数据点中减去,得到中心化的数据集:

X ′ = ( 1 − 2.5 2 − 3.5 2 − 2.5 3 − 3.5 3 − 2.5 4 − 3.5 4 − 2.5 5 − 3.5 ) = ( − 1.5 − 1.5 − 0.5 − 0.5 0.5 0.5 1.5 1.5 ) \mathbf{X^\prime} = \begin{pmatrix} 1 - 2.5 & 2 - 3.5 \\ 2 - 2.5 & 3 - 3.5 \\ 3 - 2.5 & 4 - 3.5 \\ 4 - 2.5 & 5 - 3.5 \end{pmatrix} = \begin{pmatrix} -1.5 & -1.5 \\ -0.5 & -0.5 \\ 0.5 & 0.5 \\ 1.5 & 1.5 \end{pmatrix} X= 12.522.532.542.523.533.543.553.5 = 1.50.50.51.51.50.50.51.5

第三步:计算协方差矩阵

接下来,我们计算协方差矩阵的元素。由于数据集中有 2 个特征,我们需要计算以下协方差:

  1. 协方差 σ 11 \sigma_{11} σ11(特征 1 的方差)
    σ 11 = 1 3 [ ( − 1.5 ) 2 + ( − 0.5 ) 2 + ( 0.5 ) 2 + ( 1.5 ) 2 ] = 1 3 [ 2.25 + 0.25 + 0.25 + 2.25 ] = 5 3 ≈ 1.6667 \sigma_{11} = \frac{1}{3} [(-1.5)^2 + (-0.5)^2 + (0.5)^2 + (1.5)^2] = \frac{1}{3} [2.25 + 0.25 + 0.25 + 2.25] = \frac{5}{3} \approx 1.6667 σ11=31[(1.5)2+(0.5)2+(0.5)2+(1.5)2]=31[2.25+0.25+0.25+2.25]=351.6667

  2. 协方差 σ 12 \sigma_{12} σ12(特征 1 和特征 2 的协方差)
    σ 12 = 1 3 [ ( − 1.5 ) ( − 1.5 ) + ( − 0.5 ) ( − 0.5 ) + ( 0.5 ) ( 0.5 ) + ( 1.5 ) ( 1.5 ) ] = 1 3 [ 2.25 + 0.25 + 0.25 + 2.25 ] = 5 3 ≈ 1.6667 \sigma_{12} = \frac{1}{3} [(-1.5)(-1.5) + (-0.5)(-0.5) + (0.5)(0.5) + (1.5)(1.5)] = \frac{1}{3} [2.25 + 0.25 + 0.25 + 2.25] = \frac{5}{3} \approx 1.6667 σ12=31[(1.5)(1.5)+(0.5)(0.5)+(0.5)(0.5)+(1.5)(1.5)]=31[2.25+0.25+0.25+2.25]=351.6667

  3. 协方差 σ 22 \sigma_{22} σ22(特征 2 的方差)
    σ 22 = 1 3 [ ( − 1.5 ) 2 + ( − 0.5 ) 2 + ( 0.5 ) 2 + ( 1.5 ) 2 ] = 5 3 ≈ 1.6667 \sigma_{22} = \frac{1}{3} [(-1.5)^2 + (-0.5)^2 + (0.5)^2 + (1.5)^2] = \frac{5}{3} \approx 1.6667 σ22=31[(1.5)2+(0.5)2+(0.5)2+(1.5)2]=351.6667

因此,协方差矩阵为:

Σ = ( 1.6667 1.6667 1.6667 1.6667 ) \Sigma = \begin{pmatrix} 1.6667 & 1.6667 \\ 1.6667 & 1.6667 \end{pmatrix} Σ=(1.66671.66671.66671.6667)

协方差矩阵的意义

从协方差矩阵中我们可以得出以下结论:

  • 方差:特征 1 和特征 2 的方差都是 1.6667,这说明数据在这两个特征上的离散程度是相同的。
  • 协方差:特征 1 和特征 2 之间的协方差是 1.6667,表示这两个特征之间有正相关关系。

总结

协方差矩阵是分析多维数据的重要工具,它能够描述数据集中各个特征之间的关系。在机器学习中,协方差矩阵常用于主成分分析(PCA)等技术中,以帮助理解数据的内在结构。通过计算协方差矩阵,我们可以更好地了解特征之间的相关性和数据的分布特性。

相关文章:

协方差矩阵及其计算方法

协方差矩阵(Covariance Matrix)是一个描述多维数据特征之间相互关系的矩阵,广泛应用于统计学和机器学习中。它用于表示各个特征之间的协方差,是分析多维数据分布和特征依赖性的重要工具。 什么是协方差矩阵? 协方差矩…...

【OH】openHarmony开发环境搭建(基于windows子系统WSL)

前言 本文主要介绍基于windows子系统WSL搭建openHarmony开发环境。 WSL与Vmware虚拟机的区别,可以查看WSL与虚拟机的区别 更详细的安装配置过程可参考微软官网: ​安装 WSL 前提 以下基于windows 111专业版进行配置,windows 10应该也是可以…...

Visual Studio Code 端口转发功能详解

Visual Studio Code 端口转发功能详解 引言 Visual Studio Code(简称 VS Code)是一个功能强大的源代码编辑器,它支持多种编程语言的语法高亮、智能代码补全、自定义快捷键、代码重构等特性。除了这些基本功能外,VS Code 还提供了…...

Android Framework AMS(14)ContentProvider分析-1(CP组件应用及开机启动注册流程解读)

该系列文章总纲链接:专题总纲目录 Android Framework 总纲 本章关键点总结 & 说明: 说明:本章节主要解读ContentProvider组件的基本知识。关注思维导图中左上侧部分即可。 有了前面activity组件分析、service组件分析、广播组件分析的基…...

Three.js PBR材质

本文将详细介绍Three.js中的PBR(Physically Based Rendering)材质,包括PBR的基本概念、适用场景、PBR材质的构建以及一些高级应用技巧。 1. PBR(Physically Based Rendering)基本概念 PBR,即Physically B…...

智谱AI清影升级:引领AI视频进入音效新时代

前几天智谱推出了新清影,该版本支持4k、60帧超高清画质、任意尺寸,并且自带音效的10秒视频,让ai生视频告别了"哑巴时代"。 智谱AI视频腾空出世,可灵遭遇强劲挑战!究竟谁是行业翘楚?(附测评案例)之前智谱出世那时体验了一…...

嵌入式硬件电子电路设计(五)MOS管详解(NMOS、PMOS、三极管跟mos管的区别)

引言:在我们的日常使用中,MOS就是个纯粹的电子开关,虽然MOS管也有放大作用,但是几乎用不到,只用它的开关作用,一般的电机驱动,开关电源,逆变器等大功率设备,全部使用MOS管…...

Centos 9 安装 PostgreSQL 16 并支持远程访问

仅列出核心操作,可以解决使用过程中遇到的访问问题。 1 安装 使用dnf源安装 sudo dnf module -y install postgresql:16 2 配置文件夹权限 使用root权限操作 sudo chown postgres:postgres /var/lib/pgsql/datasudo chmod -R 0750 /var/lib/pgsql/data 3 初…...

Dubbo源码解析(三)

一、Dubbo整合Spring启动流程 Dubbo的使用可以不依赖Spring,但是生产环境中Dubbo都是整合到Spring中一起使用,所以本章就解析Dubbo整合Spring的启动流程 一、传统的xml解析方式 一、Dubbo配置解析流程 在Java 中,一切皆对象。在JDK 中使用…...

HarmonyOS Next星河版笔记--界面开发(5)

1.字符串 1.1.字符串拼接 作用:把两个或多个字符串,拼成一个字符串。(通常是用来拼接字符串和变量) hello world > helloworld 加好作用:拼接 let name:string 小明 console.log(简介信息,名字是 name) …...

Spring Boot3 实战案例合集上线了

Spring Boot3实战案例合集...

在Ubuntu 24.04 LTS上安装飞桨PaddleX

前面我们介绍了《在Windows用远程桌面访问Ubuntu 24.04.1 LTS》本文接着介绍安装飞桨PaddleX。 PaddleX 3.0 是基于飞桨框架构建的一站式全流程开发工具,它集成了众多开箱即用的预训练模型,可以实现模型从训练到推理的全流程开发,支持国内外多…...

Homebrew 命令大全

Homebrew 是 macOS 和 Linux 系统上的一个流行的包管理器,它可以帮助用户轻松地安装、更新和管理软件包。以下是一些常用的 Homebrew 命令: 安装 Homebrew 如果你还没有安装 Homebrew,可以使用以下命令在 macOS 上进行安装: /b…...

Docker+Django项目部署-从Linux+Windows实战

一、概述 1. 什么是Docker Docker 是一个开源的应用容器引擎,支持在win、mac、Linux系统上进行安装。可以帮助我们在一台电脑上创建出多个隔离的环境,比传统的虚拟机极大的节省资源 。 为什么要创建隔离的环境? 假设你先在有一个centos7.…...

前端 JS 实用操作总结

目录 1、重构解构 1、数组解构 2、对象解构 3、...展开 2、箭头函数 1、简写 2、this指向 3、没有arguments 4、普通函数this的指向 3、数组实用方法 1、map和filter 2、find 3、reduce 1、重构解构 1、数组解构 const arr ["唐僧", "孙悟空&quo…...

11.15 机器学习-集成学习方法-随机森林

# 机器学习中有一种大类叫**集成学习**(Ensemble Learning),集成学习的基本思想就是将多个分类器组合,从而实现一个预测效果更好的集成分类器。集成算法可以说从一方面验证了中国的一句老话: # 三个臭皮匠&#xff0c…...

【SQL】E-R模型(实体-联系模型)

目录 一、介绍 1、实体集 定义和性质 属性 E-R图表示 2. 联系集 定义和性质 属性 E-R图表示 一、介绍 实体-联系数据模型(E-R数据模型)被开发来方便数据库的设计,它是通过允许定义代表数据库全局逻辑结构的企业模式&#xf…...

C/C++静态库引用过程中出现符号未定义的处理方式

问题背景: 在接入新库(静态库)时遇到了符号未定义问题,并发现改变静态库的链接顺序可以解决问题。 问题根源: 静态库是由 .o 文件拼接而成的,链接静态库时,链接器以 .o 文件为单位进行处理。链接…...

『VUE』27. 透传属性与inheritAttrs(详细图文注释)

目录 什么是透传属性(Forwarding Attributes)使用条件唯一根节点禁用透传属性继承总结 欢迎关注 『VUE』 专栏,持续更新中 欢迎关注 『VUE』 专栏,持续更新中 什么是透传属性(Forwarding Attributes) 在 V…...

借助Excel实现Word表格快速排序

实例需求:Word中的表格如下图所示,为了强化记忆,希望能够将表格内容随机排序,表格第一列仍然按照顺序编号,即编号不跟随表格行内容调整。 乱序之后的效果如下图所示(每次运行代码的结果都不一定相同&#x…...

数据结构 ——— 层序遍历链式二叉树

目录 链式二叉树示意图​编辑 何为层序遍历 手搓一个链式二叉树 实现层序遍历链式二叉树 链式二叉树示意图 何为层序遍历 和前中后序遍历不同,前中后序遍历链式二叉树需要利用递归才能遍历 而层序遍历是非递归的形式,如上图:层序遍历的…...

使用 Prompt API 与您的对象聊天

tl;dr:GET、PUT、PROMPT。现在,可以使用新的 PromptObject API 仅使用自然语言对存储在 MinIO 上的对象进行总结、交谈和提问。在本文中,我们将探讨这个新 API 的一些用例以及代码示例。 赋予动机: 对象存储和 S3 API 的无处不在…...

SpringBoot整合Mybatis-Plus实践汇总

相关依赖 MyBatis-Plus涉及的依赖主要是Mybatis-start、和分页插件的依赖&#xff0c;不考虑使用额外分页插件的前提下&#xff0c;只需要mybatis-plus-boot-starter一个依赖即可与SpringBoot集成&#xff1a; <!--Mybatis-plugs--><dependency><groupId>co…...

基于Spring Boot的在线性格测试系统设计与实现(源码+定制+开发)智能性格测试与用户个性分析平台、在线心理测评系统的开发、性格测试与个性数据管理系统

博主介绍&#xff1a; ✌我是阿龙&#xff0c;一名专注于Java技术领域的程序员&#xff0c;全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师&#xff0c;我在计算机毕业设计开发方面积累了丰富的经验。同时&#xff0c;我也是掘金、华为云、阿里云、InfoQ等平台…...

Python实现人脸识别算法并封装为类库

引言 人脸识别技术在现代社会中应用广泛&#xff0c;从安全监控到智能门锁&#xff0c;再到社交媒体中的照片标记功能&#xff0c;都离不开这项技术。本文将详细介绍如何使用Python实现基本的人脸识别算法&#xff0c;并将其封装为一个类库&#xff0c;以便在多个项目中复用。…...

uniapp小程序分享使用canvas自定义绘制 vue3

使用混入结合canvas做小程序的分享 在混入里面定义一个全局共享的分享样式&#xff0c;在遇到特殊页面需要单独处理 utils/share.js import { ref } from vue; export default {onShow() {// 创建时设置统一页面的默认值uni.$mpShare {title: 分享的标题,path: /pages/home/…...

SpringCloud核心组件(四)

文章目录 NacosNacos 配置中心1.起源2.基本概念ProfileData IDGroup 3.基础配置a. bootstrap.ymlb. application.ymlc. nacos 中的配置 DataIDd.测试读取配置中心配置内容 4.配置隔离a.命名空间b.DataIDc.bootstrap.ymld.service 隔离 5.配置拆分a.配置拆分策略b.DataID 配置c.…...

如何把本地docker 镜像下载用到centos系统中呢?

如果需要将镜像下载到本地或在 CentOS 系统上使用该镜像&#xff0c;你可以按照以下步骤操作&#xff1a; 1. 拉取镜像 如果想将镜像从 Docker Hub 或其他镜像仓库下载到本地&#xff0c;可以使用 docker pull 命令。 如果使用的是本地构建的镜像&#xff08;如 isc:v1.0.0&…...

Godot的开发框架应当是什么样子的?

目录 前言 全局协程还是实例协程&#xff1f; 存档&#xff01; 全局管理类&#xff1f; UI框架&#xff1f; Godot中的异步&#xff08;多线程&#xff09;加载 Godot中的ScriptableObject 游戏流程思考 结语 前言 这是一篇杂谈&#xff0c;主要内容是对我…...

GitHub新手入门 - 从创建仓库到协作管理

GitHub新手入门 - 从创建仓库到协作管理 GitHub 是开发者的社交平台&#xff0c;同时也是代码托管的强大工具。无论是个人项目、开源协作&#xff0c;还是团队开发&#xff0c;GitHub 都能让你轻松管理代码、版本控制和团队协作。今天&#xff0c;我们将从基础开始&#xff0c…...