当前位置: 首页 > news >正文

【自用】0-1背包问题与完全背包问题的Java实现

引言

背包问题是计算机科学领域的一个经典优化问题,分为多种类型,其中最常见的是0-1背包问题和完全背包问题。这两种问题的核心在于如何在有限的空间内最大化收益,但它们之间存在一些关键的区别:0-1背包问题允许每个物品只能选择一次,而完全背包问题则允许无限次选取同一物品。本篇博客将分别介绍这两个问题的动态规划解法,并附带相应的Java代码实现。

0-1背包问题

问题描述

假设你有一个背包,其最大承重能力为W千克,现在有一系列物品,每个物品有自己的重量Wi和价值Vi。你的任务是从这些物品中挑选一部分装入背包,使得背包的价值尽可能大,但不能超过背包的最大承重限制。

解决方案

我们可以采用动态规划的方法来求解这个问题。定义一个二维数组dp[i][j]表示从前i个物品中选择若干个放入容量为j的背包所能获得的最大价值。状态转移方程

Java代码实现

package dp;import java.util.ArrayList;
import java.util.List;public class Knapsack {public static void main(String[] args) {int n = 4; // 物品数量int bagweight = 16; // 背包最大容量int[] weight = {5, 7, 3, 4}; // 物品重量int[] value = {2, 5, 8, 1}; // 物品价值// 初始化 dp 数组int[][] dp = new int[n + 1][bagweight + 1];// 动态规划填充 dp 数组for (int i = 1; i <= n; i++) {for (int j = 0; j <= bagweight; j++) {if (j < weight[i - 1]) {dp[i][j] = dp[i - 1][j]; // 不选择当前物品} else {dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i - 1]] + value[i - 1]); // 选择或不选择当前物品}}}// 输出最大价值System.out.println("最大价值: " + dp[n][bagweight]);// 回溯找到具体的物品List<Integer> selectedItems = new ArrayList<>();int i = n, j = bagweight;while (i > 0 && j > 0) {if (dp[i][j] != dp[i - 1][j]) {selectedItems.add(i - 1); // 物品索引从0开始j -= weight[i - 1];}i--;}// 输出选择的物品System.out.print("选择的物品: ");for (int item : selectedItems) {System.out.print(item + " (重量: " + weight[item] + ", 价值: " + value[item] + ") ");}System.out.println();}
}

完全背包问题

问题描述

完全背包问题与0-1背包问题类似,不同之处在于每个物品的数量不限,即你可以无限制地选择同一个物品。

解决方案

对于完全背包问题,我们需要稍微修改一下状态转移方程。由于每个物品都可以多次选择,因此需要在循环中考虑是否要加入该物品到背包中。

  1. 状态表示

    • dp[i][j] 表示前 i 种物品放入容量为 j 的背包里任意取的最大价值。
  2. 确定边界和遍历顺序

    • 先遍历背包重量 (内层),再遍历物品 (外层循环)。
      for(int i=1;i<=n;i++) // 物品数量for(int j=1;j<=m;j++) // 背包容量if(j>=w[i]) // 判断是否能放得下第i件物品dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]); // 更新dp数组else dp[i][j]=dp[i-1][j]; // 不选第i件物品
  3. 找到状态转移方程

    • 状态转移方程是关键部分,它描述了如何从已知的状态推导出新的状态。
      dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])
    • 这意味着,对于每一件物品,可以选择放进去或者不放,比较两种情况下所能获得的最大价值。

Java代码实现

package dp;import java.util.ArrayList;
import java.util.List;public class AllPack {public static void main(String[] args) {int n = 3; // 物品数量int bagweight = 7; // 背包最大容量int[] weight = {3, 4, 2}; // 物品重量int[] value = {4, 5, 3}; // 物品价值// 初始化 dp 数组int[][] dp = new int[n + 1][bagweight + 1];// 动态规划填充 dp 数组for (int i = 1; i <= n; i++) {for (int j = 0; j <= bagweight; j++) {dp[i][j] = dp[i - 1][j]; // 不选择当前物品if (j >= weight[i - 1]) {dp[i][j] = Math.max(dp[i][j], dp[i][j - weight[i - 1]] + value[i - 1]); // 选择或不选择当前物品}}}// 输出最大价值System.out.println("最大价值: " + dp[n][bagweight]);// 回溯找到具体的物品List<Integer> selectedItems = new ArrayList<>();int i = n, j = bagweight;while (i > 0 && j >= 0) {if (j >= weight[i - 1] && dp[i][j] != dp[i - 1][j]) {selectedItems.add(i - 1); // 物品索引从0开始j -= weight[i - 1];}i--;}// 输出选择的物品System.out.print("选择的物品: ");for (int item : selectedItems) {System.out.print(item + " (重量: " + weight[item] + ", 价值: " + value[item] + ") ");}System.out.println();}
}

  1. 0-1背包问题

    • 每个物品只能选择一次。
    • 回溯逻辑中,一旦确定选择了某个物品,就从当前的背包容量中减去该物品的重量,并且继续回溯下一个物品。
  2. 完全背包问题

    • 每个物品可以选择多次,直到背包容量不允许为止。
    • 回溯逻辑中,需要检查在当前背包容量下可以选择该物品的次数。这通常涉及到一个循环,直到背包容量不足以再添加一个该物品为止。

相关文章:

【自用】0-1背包问题与完全背包问题的Java实现

引言 背包问题是计算机科学领域的一个经典优化问题&#xff0c;分为多种类型&#xff0c;其中最常见的是0-1背包问题和完全背包问题。这两种问题的核心在于如何在有限的空间内最大化收益&#xff0c;但它们之间存在一些关键的区别&#xff1a;0-1背包问题允许每个物品只能选择…...

HTML5实现俄罗斯方块小游戏

文章目录 1.设计来源1.1 主界面1.2 皮肤风格1.2 游戏中界面1.3 游戏结束界面 2.效果和源码2.1 动态效果2.2 源代码 源码下载 作者&#xff1a;xcLeigh 文章地址&#xff1a;https://blog.csdn.net/weixin_43151418/article/details/143788449 HTML5实现俄罗斯方块小游戏&#x…...

Mybatis官方生成器使用示例

在这篇文章中&#xff0c;我们将通过实际代码示例来说明如何使用 MyBatis Generator (MBG) 来自动化生成 MyBatis 项目所需的实体类、Mapper 接口和 Mapper XML 文件。我们将使用一个 Maven 插件来执行代码生成&#xff0c;并提供详细的配置和解释。 1. MyBatis Generator 简介…...

演员王子辰—专注革命题材 《前行者》后再出发

2021年10月22日在北京卫视播出的由张鲁一、聂远等人主演的电视剧《前行者》&#xff0c;讲述了在二十世纪三十年代初&#xff0c;因叛徒出卖&#xff0c;我上海地下党组织遭到严重破坏&#xff0c;革命事业陷入一片白色恐怖之中。我党情报员马天目刚从法国归来&#xff0c;临危…...

Spring Boot基础教学:创建第一个Spring Boot项目

使用Spring Initializr生成项目 Spring Initializr是一个在线工具&#xff0c;用于快速生成Spring Boot项目的基本结构。以下是使用Spring Initializr创建项目的步骤&#xff1a; 步骤1&#xff1a;访问Spring Initializr 打开网址 start.spring.io。 步骤2&#xff1a;选择…...

基于SpringBoot+Vue实现校园多媒体信息共享平台

作者简介&#xff1a;Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验&#xff0c;被多个学校常年聘为校外企业导师&#xff0c;指导学生毕业设计并参与学生毕业答辩指导&#xff0c;…...

WebRTC API分析

主题 本文详细描述常用的webrtc api 媒体协商类 myPeerConnection.createOffer([options]); var options { offerToReceiveAudio: true, // 告诉另一端&#xff0c;你是否想接收音频&#xff0c;默认true offerToReceiveVideo: true, // 告诉另一端&a…...

ArkTS学习笔记:ArkTS起步

ArkTS是HarmonyOS的主力应用开发语言&#xff0c;基于TypeScript扩展&#xff0c;强化了静态检查和分析&#xff0c;旨在提升程序稳定性和性能。它采用静态类型&#xff0c;禁止运行时改变对象布局&#xff0c;并对UI开发框架能力进行扩展&#xff0c;支持声明式UI描述和自定义…...

spring-gateway网关聚合swagger实现多个服务接口切换

前提条件 微服务已经集成了swagger&#xff0c;并且注册进了nacos。 gateway配置 package com.zmy.springcloud.config;import org.springframework.beans.factory.annotation.Autowired; import org.springframework.beans.factory.annotation.Value; import org.springfra…...

关于 Oracle Database Express Edition 的功能和安装

Oracle Database Express Edition&#xff0c;简称 Oracle Database XE。是一个免费的版本&#xff0c;主要用于培训和一些功能要求比较简单&#xff0c;又需要免费分发的场景。 看看官方的说明&#xff1a; Whether you are a developer, a DBA, a data scientist, an educat…...

领夹麦克风哪个品牌好,手机领夹麦克风哪个牌子好,选购推荐

​无线麦克风凭借其无与伦比的便携性与灵活性&#xff0c;成为在演讲、表演以及会议等多种场合中不可或缺的有力帮手。它挣脱了线缆的束缚&#xff0c;使得声音的传播更加自由自在。其操作十分简便&#xff0c;只需简单配对就能投入使用&#xff0c;从而可以轻松地适应各类场景…...

什么是 Go 语言?

Go 语言&#xff08;也称为 Golang&#xff09;是由 Google 开发的一种开源编程语言。它最初由 Rob Pike、Ken Thompson 和 Robert Griesemer 等人于 2007 年设计&#xff0c;经过两年的研发&#xff0c;于 2009 年首次公开发布。Go 语言的设计目标是提高编程效率&#xff0c;特…...

AI 大模型重塑软件开发流程:定义、应用、优势与挑战

随着人工智能技术的飞速发展&#xff0c;AI 大模型正在深刻影响软件开发的各个环节。从代码自动生成到智能测试&#xff0c;AI 大模型不仅提高了开发效率&#xff0c;还带来了全新的开发模式和流程变化。本文将从 AI 大模型的定义、应用场景、优势以及挑战等方面&#xff0c;探…...

微服务即时通讯系统的实现(客户端)----(1)

目录 1. 项目整体介绍1.1 项目概况1.2 界面预览和功能介绍1.3 技术重点和服务器架构 2. 项目环境搭建2.1 安装Qt62.3 安装vcpkg2.3 安装protobuf2.4 构建项目2.5 配置CMake属性 3. 项目核心数据结构的实现3.1 创建data.h存放核心的类3.2 工具函数的实现3.3 创建编译开关 4. 界面…...

【freertos】FreeRTOS时间管理

FreeRTOS时间管理 一、睡眠延时函数1、vTaskDelay2、vTaskDelayUntil3、相对延时与绝对延时对比 二、自定义延时函数1、微秒延时2、毫秒延时 一、睡眠延时函数 1、vTaskDelay \quad 在UCOSIII 中延时函数OSTimeDly()可以设置为三种模式:相对模式、周期模式和绝对模式。在FreeR…...

台式电脑没有声音怎么办?台式电脑没有声音解决详解

台式电脑一般来说都是没有内置扬声器的&#xff0c;需要连接耳机或者是音响才可以播放音乐。那么如果遇到台式电脑没有声音的问题&#xff0c;我们也需要确认这些设备硬件有没问题&#xff0c;知道原因才可以进行处理。下面本文将为你介绍台式电脑没有声音的可能原因和解决方法…...

机器学习基础02

目录 1.特征工程 1.1特征工程概念 1.2特征工程的步骤 1.3特征工程-特征提取 1.3.1字典列表(json)特征提取 1.3.2文本特征提取 英文文本提取 中文文本提取 1.3.3TF-IDF文本特征词的稀有程度特征提取 2.无量纲化 2.1归一化 2.2标准化 2.3fit、fit_transform、transfo…...

element plus的表格内容自动滚动

<el-table:data"tableData"ref"tableRef"borderstyle"width: 100%"height"150"><el-table-column prop"date" label"名称" width"250" /><el-table-column prop"name" label&…...

哈佛商业评论 | 未来商业的技术趋势:百度李彦宏谈技术如何变革商业

在《哈佛商业评论》的HBR IdeaCast节目中&#xff0c;百度联合创始人、首席执行官兼董事长李彦宏分享了他对人工智能&#xff08;AI&#xff09;和其他技术趋势的见解。这期节目讨论了百度如何将生成式AI融入业务&#xff0c;以及这些技术如何重塑我们的生活和工作方式。让我们…...

Pytorch如何将嵌套的dict类型数据加载到GPU

在PyTorch中&#xff0c;您可以使用.to(device)方法将嵌套的字典中的所有支持的Tensor对象转移到GPU。以下是一个简单的例子 import torch# 假设您已经有了一个名为device的GPU设备对象 device torch.device("cuda:0" if torch.cuda.is_available() else "cp…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

Java入门学习详细版(一)

大家好&#xff0c;Java 学习是一个系统学习的过程&#xff0c;核心原则就是“理论 实践 坚持”&#xff0c;并且需循序渐进&#xff0c;不可过于着急&#xff0c;本篇文章推出的这份详细入门学习资料将带大家从零基础开始&#xff0c;逐步掌握 Java 的核心概念和编程技能。 …...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...