机器学习基础02
目录
1.特征工程
1.1特征工程概念
1.2特征工程的步骤
1.3特征工程-特征提取
1.3.1字典列表(json)特征提取
1.3.2文本特征提取
英文文本提取
中文文本提取
1.3.3TF-IDF文本特征词的稀有程度特征提取
2.无量纲化
2.1归一化
2.2标准化
2.3fit、fit_transform、transform
3.特征降维
3.1特征选择
3.1.1低方差过滤特征选择
3.1.2相关系数特征选择
3.2主成份分析(PCA)
1.特征工程
1.1特征工程概念
对特征进行相关的处理
特征工程是将任意数据转换为可用于机器学习的数字特征,如:字典特征提取(特征离散化)、文本特征提取、图像特征提取。
1.2特征工程的步骤
(1)特征提取, 如果不是像dataframe那样的数据,要进行特征提取,比如字典特征提取,文本特征提取
(2)无量纲化(预处理)
(3)特征降维
1.3特征工程-特征提取
稀疏矩阵
稀疏矩阵是指一个矩阵中大部分元素为零,只有少数元素是非零的矩阵。
三元组表 (Coordinate List, COO):三元组表就是一种稀疏矩阵类型数据,存储非零元素的行索引、列索引和值:
(行,列) 数据
非稀疏矩阵(稠密矩阵)
非稀疏矩阵,或称稠密矩阵,是指矩阵中非零元素的数量与总元素数量相比接近或相等。
1.3.1字典列表(json)特征提取
- 创建转换器对象
sklearn.feature_extraction.DictVectorizer(sparse=True)
参数:
sparse=True返回类型为csr_matrix的稀疏矩阵
sparse=False表示返回的是数组,数组可调用.toarray()方法将稀疏矩阵转换为数组
-
转换器对象:
transfer=fit_transform(data)
转换器对象调用fit_transform(data)函数,返回转化后的矩阵或数组
- 获取特征名
transfer.get_feature_names_out()
import numpy as np
from sklearn.feature_extraction import DictVectorizer'''
字典列表特征提取
'''
data = [{'city': '成都', 'age': 30, 'temperature': 20},{'city': '重庆', 'age': 33, 'temperature': 60},{'city': '北京', 'age': 42, 'temperature': 80},{'city': '上海', 'age': 22, 'temperature': 70}, ]# 转为稀疏矩阵
transfer = DictVectorizer(sparse=True)
date_new = transfer.fit_transform(data)
print(date_new,'\n')
# 不转成三元组的形式:toarray()
print(date_new.toarray(),'\n')# 不转成三元组表的形式:sparse=False
transfer = DictVectorizer(sparse=False)
# 特征
print(transfer.get_feature_names_out())
date_new = transfer.fit_transform(data)
print(date_new,'\n')
1.3.2文本特征提取
-
英文文本提取
from sklearn.feature_extraction.text import CountVectorizer
transfer = CountVectorizer(stop_words=[ ])
data = transfer.fit_transform(documents)
关键字参数stop_words,表示词的黑名单
fit_transform函数的返回值为稀疏矩阵
from sklearn.feature_extraction.text import CountVectorizer
import pandas as pddocuments = ["This is the first document.","This document is the second document.","And this is the third one.","Is this the first document?"
]# 创建转换器对象
transfer = CountVectorizer(stop_words=['is', 'and'])data = transfer.fit_transform(documents)
# print(data)feature_df = pd.DataFrame(data=data.toarray(),columns=transfer.get_feature_names_out()
)
print(feature_df)
-
中文文本提取
下载jiaba
pip install jieba -i https://pypi.tuna.tsinghua.edu.cn/simple
API
jieba.cut(str)
import jieba
from sklearn.feature_extraction.text import CountVectorizer
import pandas as pddef chinese_cut(text):data = jieba.cut(text)data_lt = list(data)data_str = " ".join(data_lt)return data_strdocuments = ["这是第一份文件","此文档是第二个文档","这是第三个","这是第一份文件吗 "
]data_new = [chinese_cut(i) for i in documents]
transfer = CountVectorizer(stop_words=[])
data_final = transfer.fit_transform(data_new)df = pd.DataFrame(data=data_final.toarray(),columns=transfer.get_feature_names_out())
print(df)
1.3.3TF-IDF文本特征词的稀有程度特征提取
词频(Term Frequency, TF),使词数归一化
TF = 该词在文章中出现的次数 / 文章词总数
逆文档频率(Inverse Document Frequency, IDF), 反映了该词在整个文档集合中的稀有程度
IDF = lg( 文档总数 / 包含该词的文档数+1 )
包含该词的文档数+1:使分母不为0
TF-IDF=TF*IDF
- API
from sklearn.feature_extraction.text import TfidfVectorizer
transfer = TfidfVectorizer(stop_words=[' '])
ti_idf = transfer.fit_transform(data_new)
import jieba
from sklearn.feature_extraction.text import TfidfVectorizerdef chinese_cut(text):data = jieba.cut(text)data_lt = list(data)data_str = " ".join(data_lt)return data_strdocuments = ["这是第一份文件","此文档是第二个文档","这是第三个","这是第一份文件吗 "
]
data_new = [chinese_cut(i) for i in documents]transfer = TfidfVectorizer(stop_words=['这是'])
ti_idf = transfer.fit_transform(data_new)df = pd.DataFrame(data=ti_idf.toarray(),columns=transfer.get_feature_names_out())
print(df)
2.无量纲化
无量纲,即没有单位的数据
2.1归一化
公式
将原始数据映射到指定区间(默认为0-1)
x-xmin / xmax-xmin = y-a / b-a
原始数据的数值范围:[xmin,xmax]
指定区间:[a,b]
将原始数据x映射到指定区间的结果为:y
API
sklearn.preprocessing.MinMaxScaler(feature_range)
参数:feature_range默认=(0,1) 为归一化后的值域,可以自定义
fit_transform函数归一化的原始数据类型可以是list、DataFrame和ndarray, 不可以是稀疏矩阵
fit_transform函数的返回值为ndarray
示例
from sklearn.preprocessing import MinMaxScalerdata = [[2, 5, 4],[6, 1, 9],[3, 0, 7]]transfer = MinMaxScaler(feature_range=(0, 1))scaler_data = transfer.fit_transform(data)
print(scaler_data)
缺点
最大值和最小值易受到异常点影响,所以鲁棒性较差。
2.2标准化
在机器学习中,标准化是一种数据预处理技术,也称为数据归一化或特征缩放。它的目的是将不同特征的数值范围缩放到统一的标准范围,以便更好地适应一些机器学习算法,特别是那些对输入数据的尺度敏感的算法。
公式
最常见的标准化方法是Z-score标准化,也称为零均值标准化。它通过对每个特征的值减去其均值,再除以其标准差,将数据转换为均值为0,标准差为1的分布。



其中,z是转换后的数值,x是原始数据的值,μ是该特征的均值,σ是该特征的标准差
API
sklearn.preprocessing.StandardScale
transfer = StandardScaler()
与MinMaxScaler一样,原始数据类型可以是list、DataFrame和ndarray
fit_transform函数的返回值为ndarray
示例
df = pd.DataFrame(data=[[1, 2, 3, 4],[2, 1, 3, 4],[3, 2, 3, 4],[4, 2, 3, 4]]
)
# 实例化一个转换器
transfer = StandardScaler()# DataFrame进行标准化
standard_data = transfer.fit_transform(data)
print(standard_data, '\n')# 将DF转化为list,进行标准化
df_lt = df.values.tolist()
standard_data = transfer.fit_transform(df_lt)
print(standard_data, '\n')# 将DF转化为ndarray,进行标准化
df_arr = df.values
standard_data = transfer.fit_transform(df_arr)
print(standard_data, '\n')
2.3fit、fit_transform、transform
fit、fit_transform和transform有不同的作用:
fit:
这个方法用来计算数据的统计信息,比如均值和标准差(在
StandardScaler的情况下)。
fit仅用训练集上。
transform:
这个方法使用已经通过
fit方法计算出的统计信息来转换数据。可以应用于任何数据集,包括训练集、验证集或测试集,
使用的统计信息必须来自于训练集。
fit_transform:
这个方法相当于先调用
fit再调用transform,但是它在内部执行得更高效。仅在训练集上使用
一旦scaler对象在x_train使用fit(),就已经得到统计信息。对于测试集x_test,只需要使用transform方法,因为我们不希望在测试集上重新计算任何统计信息,也不希望测试集的信息影响到训练过程。如果我们对x_test也使用fit_transform,测试集的信息就可能会影响到训练过程。
总结来说:常常是先fit(x_train)然后再transform(x_test,y_test)
3.特征降维
目的:降低数据集的维度,保留重要信息。
特征降维的好处:
减少计算成本:在高维空间中处理数据可能非常耗时且计算密集。降维可以简化模型,降低训练时间和资源需求。
去除噪声:高维数据可能包含许多无关或冗余特征,这些特征可能引入噪声并导致过拟合。降维可以帮助去除这些不必要的特征。
特征降维的方式:
-
特征选择
-
从原始特征集中挑选出最相关的特征
-
-
主成份分析(PCA)
-
主成分分析就是把之前的特征通过一系列数学计算,形成新的特征,新的特征数量会小于之前特征数量
-
3.1特征选择
3.1.1低方差过滤特征选择
from sklearn.feature_selection import VarianceThreshold
transfer = VarianceThreshold(threshold)
from sklearn.feature_selection import VarianceThresholddf = pd.DataFrame(data=[[1, 2, 5, 4],[2, 1, 3, 6],[3, 2, 3, 4],[4, 2, 3, 4]],columns=['f1', 'f2', 'f3', 'f4'])# 定义一个低方差过滤器
transfer = VarianceThreshold(threshold=0.6)
vt_data = transfer.fit_transform(df)
print(vt_data)
3.1.2相关系数特征选择
from scipy.stats import pearsonr
statistic,pvalue=pearsonr(data[" "], data[" "])
from scipy.stats import pearsonrdf = pd.DataFrame(data=[[1, -2, 5, 4],[2, -1, 3, 6],[3, -2, 3, 4],[4, -2, 3, 4]],columns =['f1','f2','f3','f4'])r1 = pearsonr(df['f1'],df['f2'])# 相关性
print(r1.statistic)#皮尔逊相关系数
print(r1.pvalue)#零假设,为非负数,越小越相关
3.2主成份分析(PCA)
PCA的核心目标是从原始特征空间中找到一个新的坐标系统,使得数据在新坐标轴上的投影能够最大程度地保留数据的方差,同时减少数据的维度。

API
from sklearn.decomposition import PCA
transfer=PCA(n_components=None)
参数:
n_components:
实参为小数:表示降维后保留百分之多少的信息
实参为整数:表示减少到多少特征
from sklearn.decomposition import PCA
import numpy as npdata =np.random.rand(3,4)
# print(data)transfer = PCA(n_components=2)
data_new = transfer.fit_transform(data)
print(data_new)
from sklearn.decomposition import PCA
import numpy as npdata =np.random.rand(3,4)
# print(data)transfer = PCA(n_components=0.8)
data_new = transfer.fit_transform(data)
print(data_new)
相关文章:
机器学习基础02
目录 1.特征工程 1.1特征工程概念 1.2特征工程的步骤 1.3特征工程-特征提取 1.3.1字典列表(json)特征提取 1.3.2文本特征提取 英文文本提取 中文文本提取 1.3.3TF-IDF文本特征词的稀有程度特征提取 2.无量纲化 2.1归一化 2.2标准化 2.3fit、fit_transform、transfo…...
element plus的表格内容自动滚动
<el-table:data"tableData"ref"tableRef"borderstyle"width: 100%"height"150"><el-table-column prop"date" label"名称" width"250" /><el-table-column prop"name" label&…...
哈佛商业评论 | 未来商业的技术趋势:百度李彦宏谈技术如何变革商业
在《哈佛商业评论》的HBR IdeaCast节目中,百度联合创始人、首席执行官兼董事长李彦宏分享了他对人工智能(AI)和其他技术趋势的见解。这期节目讨论了百度如何将生成式AI融入业务,以及这些技术如何重塑我们的生活和工作方式。让我们…...
Pytorch如何将嵌套的dict类型数据加载到GPU
在PyTorch中,您可以使用.to(device)方法将嵌套的字典中的所有支持的Tensor对象转移到GPU。以下是一个简单的例子 import torch# 假设您已经有了一个名为device的GPU设备对象 device torch.device("cuda:0" if torch.cuda.is_available() else "cp…...
Shell基础2
声明! 学习视频来自B站up主 **泷羽sec** 有兴趣的师傅可以关注一下,如涉及侵权马上删除文章,笔记只是方便各位师傅的学习和探讨,文章所提到的网站以及内容,只做学习交流,其他均与本人以及泷羽sec团…...
7z 解压器手机版与解压专家:安卓解压工具对决
7z 解压器手机版和解压专家都是在安卓设备上广受欢迎的解压软件。7z 解压器手机版由深圳乡里云网络科技有限公司开发,大小为 32.8M,支持多种常见的压缩文件格式,如.zip、.rar、.7z 等。 它对安卓操作系统的特性和用户习惯进行了优化…...
C++清除所有输出【DEV-C++】所有编辑器通用 | 算法基础NO.1
各位小伙伴们,上一期的保留小数位数教学够用一辈子,有不错的点赞量,可我连一个粉丝铁粉都没有,你愿意做我的第一个铁粉吗?OK废话不多说,开始! 温故与知心 可能你也学过,且是工作者…...
【Android、IOS、Flutter、鸿蒙、ReactNative 】启动页
Android 设置启动页 自定义 splash.xml 通过themes.xml配置启动页背景图 IOS 设置启动页 LaunchScreen.storyboard 设置为启动页 storyboard页面绘制 Assets.xcassets 目录下导入图片 AppLogo Flutter 设置启动页 Flutter Android 设置启动页 自定义 launch_background.xm…...
SpringBoot 2.2.10 无法执行Test单元测试
很早之前的项目今天clone现在,想执行一个业务订单的检查,该检查的代码放在test单元测试中,启动也是好好的,当点击对应的方法执行Test的时候就报错 tip:已添加spring-boot-test-starter 所以本身就引入了junit5的库 No…...
聊天服务器(8)用户登录业务
目录 登录状态业务层代码数据模型层代码记录用户的连接信息以及线程安全问题客户端异常退出业务 登录状态 登录且状态变为online 业务层代码 #include "chatservice.hpp" #include "public.hpp" #include <string> #include <muduo/base/Loggi…...
stm32在linux环境下的开发与调试
环境安装 注:文末提供一键脚本 下载安装stm32cubeclt 下载地址为:https://www.st.com/en/development-tools/stm32cubeclt.html 选择 linux版本下载安装 安装好后默认在家目录st下 > $ ls ~/st/stm32cubeclt_1.16.0 …...
flinkOnYarn并配置prometheus+grafana监控告警
flinkOnYarn并配置prometheusgrafana监控告警 一、相关服务版本: flink版本:1.17.2 pushgateway版本:1.10.0 prometheus版本:3.0.0 grafana-v11.3.0参考了网上的多个文档以及学习某硅谷的视频,总结了一下文档&#x…...
麒麟系统下docker搭建jenkins
首先我们需要创建宿主机挂载路径,我这里放在本地的/data/henkins/home,然后赋予权限,命令如下: mkdir -p /data/jenkins/home chown -R 1000:1000 /data/jenkins/home chmod -R 777 /data/jenkins/homedocker run -d --restart …...
论文阅读 - Causally Regularized Learning with Agnostic Data Selection
代码链接: GitHub - HMTTT/CRLR: CRLR尝试实现 https://arxiv.org/pdf/1708.06656v2 目录 摘要 INTRODUCTION 2 RELATED WORK 3 CAUSALLY REGULARIZED LOGISTIC REGRESSION 3.1 Problem Formulation 3.2 Confounder Balancing 3.3 Causally Regularized Lo…...
计算机网络之会话层
一、会话层的核心功能 会话层作为OSI模型的第五层,不仅承担着建立、管理和终止通信会话的基本任务,还隐含着许多复杂且关键的功能,这些功能共同确保了网络通信的高效、有序和安全。 1. 会话建立与连接管理: 身份验证与授权&…...
blind-watermark - 水印绑定
文章目录 一、关于 blind-watermark安装 二、bash 中使用三、Python 调用1、基本使用2、attacks on Watermarked Image3、embed images4、embed array of bits 四、并发五、相关 Project 一、关于 blind-watermark Blind watermark 基于 DWT-DCT-SVD. github : https://githu…...
reduce-scatter:适合分布式计算;Reduce、LayerNorm和Broadcast算子的执行顺序对计算结果的影响,以及它们对资源消耗的影响
目录 Gather Scatter Reduce reduce-scatter:适合分布式计算 Reduce、LayerNorm和Broadcast算子的执行顺序对计算结果的影响,以及它们对资源消耗的影响 计算结果理论正确性 资源消耗方面 Gather 这个也很好理解,就是把多个进程的数据拼凑在一起。 Scatter 不同于Br…...
DAY64||dijkstra(堆优化版)精讲 ||Bellman_ford 算法精讲
dijkstra(堆优化版)精讲 题目如上题47. 参加科学大会(第六期模拟笔试) 邻接表 本题使用邻接表解决问题。 邻接表的优点: 对于稀疏图的存储,只需要存储边,空间利用率高遍历节点链接情况相对容…...
使用Git工具在GitHub的仓库中上传文件夹(超详细)
如何使用Git工具在GitHub的仓库中上传文件夹? 如果觉得博主写的还可以,点赞收藏关注噢~ 第一步:拥有一个本地的仓库 可以fork别人的仓库或者自己新创建 fork别人的仓库 或者自己创建一个仓库 按照要求填写完成后,点击按钮创建…...
Python酷库之旅-第三方库Pandas(218)
目录 一、用法精讲 1021、pandas.DatetimeIndex.inferred_freq属性 1021-1、语法 1021-2、参数 1021-3、功能 1021-4、返回值 1021-5、说明 1021-6、用法 1021-6-1、数据准备 1021-6-2、代码示例 1021-6-3、结果输出 1022、pandas.DatetimeIndex.indexer_at_time方…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
SQL慢可能是触发了ring buffer
简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...
【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制
使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下,限制某个 IP 的访问频率是非常重要的,可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案,使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...
