24 年第十届数维杯国际数模竞赛赛题浅析
本次万众瞩目的数维杯国际大学生数学建模赛题已正式出炉,无论是赛题难度还是认可度,该比赛都是数模届的独一档,含金量极高,可以用于综测加分、保研、简历添彩等各方面。考虑到大家解题实属不易,为了帮助大家取得好成绩,在数维杯国际建模中夺得国奖,下面学长就赛题给出个人浅析,供大家参考!
从赛题难度来看,个人认为赛题难度从难到易依次为:C 题 > A 题 > B 题 > D 题 。
首先是A题:飞机激光测速中的频率估计问题。该赛题给出了飞机激光测速的实际数据,且不同飞行周期数据存在差异,如信号的幅度、频率、相位以及噪声特性等。这增加了数据处理和分析的难度,需要参赛队伍能够准确地提取有效信息。对信号处理和数学建模能力要求较高,需要参赛队伍掌握多种频率估计方法,并能够根据实际情况灵活运用和改进,难度较大。
其次是B题:空间变量的协同估计方法研究。该赛题提供了空间变量的测量数据,需要理解空间变量的相关性和依赖性概念,运用空间统计学中的方法(如克里金算法)进行分析和处理。需要参赛队伍具备一定的统计学基础和空间分析能力,能够理解和运用空间统计方法解决实际问题,难度适中。
再次是C题:脉冲星计时噪声扣除与大气时延扣除的时间信号建模。该赛题涉及知识领域:天体物理学、信号处理、数学建模等多领域知识的综合运用。需要深入理解脉冲星的特性、计时噪声的产生机制、各种时延的影响因素以及相关的数学模型和算法。对参赛队伍的专业知识储备、数学建模能力、数据分析能力和算法设计能力都有极高的要求,难度较大。
最后是D题:城市韧性与可持续发展能力评估。该赛题涉及城市规划、经济学(涉及人口、GDP 等经济因素)、数据分析、政策制定等多领域知识的综合应用。目提供了房产销售信息和 POI 数据,需要对这些数据进行整理和分析,挖掘其中与城市发展相关的信息。数据来源相对较为常规,数据处理难度相对较低。更侧重于对实际城市问题的分析和解决,对数据的综合分析能力和实际问题的理解能力要求较高,数学建模难度相对较低,整体难度相对较小。
综上所述,D题相对较为简单,适合有一定统计学和数据分析基础,且善于将数据与实际城市问题相结合进行综合分析的参赛队伍;B 题难度适中,适合具备一定统计学基础,尤其是熟悉空间统计分析方法,能够运用专业知识解决实际空间变量估计问题的参赛队伍;A 题难度较大,需要参赛队伍具备扎实的数学物理建模能力,能够运用数学知识解决物理场景中的复杂信号处理问题,同时要有良好的运筹优化能力设计高效算法,并且熟练掌握代码编写实现算法功能;C 题难度最大,适合具备扎实天体物理学基础,拥有卓越数学建模能力,能够处理复杂天文数据并进行高精度模型构建和算法设计的参赛队伍。
因此,本次学长将会同时针对B和D两道赛题进行建模助力,需要相关助攻资料,请关注并联系学长!
(需要完整资料请关注并回复:“24数维杯”,获取!)
下面是A-D题具体思路分析:



受限于篇幅,获取具体资料请关注并回复:“24数维杯”
相关文章:
24 年第十届数维杯国际数模竞赛赛题浅析
本次万众瞩目的数维杯国际大学生数学建模赛题已正式出炉,无论是赛题难度还是认可度,该比赛都是数模届的独一档,含金量极高,可以用于综测加分、保研、简历添彩等各方面。考虑到大家解题实属不易,为了帮助大家取得好成绩…...
Dubbo 3.x源码(25)—Dubbo服务引用源码(8)notify订阅服务通知更新
基于Dubbo 3.1,详细介绍了Dubbo服务的发布与引用的源码。 此前我们学习了接口级的服务引入订阅的refreshInterfaceInvoker方法,当时还有最为关键的notify服务通知更新的部分源码没有学习,本次我们来学习notify通知本地服务更新的源码。 Dubb…...
排序算法 -计数排序
文章目录 1. 计数排序(Counting Sort)1.1 简介1.2 计数排序的步骤1.3 计数排序C语言实现注释说明: 1.4 时间复杂度1.5 空间复杂度 1. 计数排序(Counting Sort) 1.1 简介 计数排序(Counting Sortÿ…...
Java学习,基本数据类型
变量就是申请内存来存储值,当创建变量的时候,需要在内存中申请空间。内存管理系统根据变量的类型为变量分配存储空间,分配的空间只能用来储存该类型数据。Java 提供了八种基本数据类型,这些类型可以分为四大类:整数类型…...
单片机GPIO中断+定时器 软件串口通信
单片机GPIO中断定时器 软件串口通信 解决思路代码示例 解决思路 串口波特率9600bps,每个bit约为1000000us/9600104.16us; 定时器第一次定时时间设为52us即半个bit的时间,其目的是偏移半个bit时间,之后的每104us采样并读取1bit数据。使得采样…...
elementui el-table中给表头 el-table-column 加一个鼠标移入提示说明
前言 在使用el-table 表格中有些表格的表头需要加入一些提示,鼠标移入则出现提示,非常实用,我是通过el-table中的el-tooltip实现的,以下的效果预览 代码实现 <el-table ref"multipleTable" :data"data"…...
NVR小程序接入平台/设备EasyNVR多个NVR同时管理设备接入:海康NVR 3.0提示不在线如何处理?
在视频监控领域,设备的兼容性和互操作性一直是用户关注的重点。海康NVR管理平台EasyNVR作为一款轻量级的视频监控平台,凭借其强大的兼容性、可扩展性和丰富的功能,成为了公共安全领域“云平台”解决方案的杰出代表。然而,在实际应…...
datawhale11月组队学习 模型压缩技术2:PyTorch模型剪枝教程
文章目录 一、 prune模块简介1.1 常用方法1.2 剪枝效果1.3 二、三、四章剪枝测试总结 二、局部剪枝(Local Pruning)2.1 结构化剪枝2.1.1 对weight进行随机结构化剪枝(random_structured)2.1.2 对weight进行迭代剪枝(范…...
SOL链上Meme生态的崛起与未来#Dapp开发#链游#交易所#公链搭建
近年来,随着区块链技术的普及和NFT文化的流行,meme(网络迷因)逐渐成为区块链生态中的重要组成部分。meme不仅是一种互联网文化符号,更逐步渗透进了去中心化金融(DeFi)、NFT和元宇宙等多个领域&a…...
部署Apache Doris
官方文档:https://doris.apache.org/zh-CN/installing/compilation.html 一、编译 使用 Docker 开发镜像编译(推荐) 1.拉取镜像 #下载 Docker 最新主干版本代码,会随主干版本不断更新。 $ docker pull apache/incubator-doris:…...
ElasticSearch-全文检索(一)基本介绍
简介 Elasticsearch:官方分布式搜索和分析引擎 | Elastic 全文搜索属于最常见的需求,开源的Elasticsearch是目前全文搜索引擎的首选。 它可以快速地储存、搜索和分析海量数据。维基百科、StackOverflow、Github都采用它 Elastic的底层是开源库Lucene。但…...
paramiko 库实现的暴力破解 SSH 密码
import paramiko import optparse import threading import time from threading import Thread, BoundedSemaphore# 用paramiko暴力破解SSH密码 # 最大并发连接尝试的数量,可根据实际情况调整,适当减小可降低对目标服务器的压力以及减少多线程同步问题出…...
Python 操作 Elasticsearch 全指南:从连接到数据查询与处理
文章目录 Python 操作 Elasticsearch 全指南:从连接到数据查询与处理引言安装 elasticsearch-py连接到 Elasticsearch创建索引插入数据查询数据1. 简单查询2. 布尔查询 更新文档删除文档和索引删除文档删除索引 批量插入数据处理分页结果总结 Python 操作 Elasticse…...
Jarvis March算法详解及Python实现(附设计模式案例)
目录 Jarvis March算法详解及Python实现(附设计模式案例)第一部分:Jarvis March算法概述与原理1.1 什么是Jarvis March算法?1.2 算法原理1.3 算法流程1.4 时间复杂度第二部分:Jarvis March算法的Python实现(面向对象设计)2.1 面向对象设计2.2 代码实现2.3 代码解释第三部…...
AIGC中的文本风格迁移:基于深度学习的实现
引言 文本风格迁移是自然语言处理领域的一个重要研究方向,它可以将文本从一种风格转换为另一种风格,同时保留其原有的内容。随着深度学习技术的发展,文本风格迁移的方法变得越来越先进和高效。本文将探讨基于序列到序列模型(Seq2…...
丹摩征文活动 |【前端开发】HTML+CSS+JavaScript前端三剑客的基础知识体系了解
前言 🌟🌟本期讲解关于HTMLCSSJavaScript的基础知识,小编带领大家简单过一遍~~~ 🌈感兴趣的小伙伴看一看小编主页:GGBondlctrl-CSDN博客 🔥 你的点赞就是小编不断更新的最大动力 …...
响应“一机两用”政策 落实政务外网安全
在数字化时代,政务办公外网安全的重要性日益凸显,特别是在“一机两用”的背景下,即同一台终端既要处理政务内网的数据,又要访问互联网,这对网络安全提出了更高的要求。深信达SPN安全上网方案,即反向沙箱技术…...
通过JS删除当前域名中的全部COOKIE教程
有时候需要通过JS来控制一下网站的登录状态,就例如:网站登出功能,我们可以直接通过JS将所有COOKIE删除,COOKIE删除之后,网站自然也就退出了。 那么今天我就给大家分享一段JS的函数,通过调用这段函数就可以实现删除COO…...
Flutter:Widget生命周期
StatelessWidget:无状态部件的生命周期 import package:flutter/material.dart;void main() {runApp(App()); }class App extends StatelessWidget {overrideWidget build(BuildContext context) {return MaterialApp(home: MyHomePage(title: MyHome),);} }class M…...
Flutter:Dio下载文件到本地
import dart:io; import package:dio/dio.dart;main(){// 创建dio对象final dio Dio();// 下载地址var url https://*******.org/files/1.0.0.apk;// 手机端路径String savePath Directory.systemTemp.path/ceshi.apk;print(savePath);downLoad(dio,url,savePath); }downLo…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
centos 7 部署awstats 网站访问检测
一、基础环境准备(两种安装方式都要做) bash # 安装必要依赖 yum install -y httpd perl mod_perl perl-Time-HiRes perl-DateTime systemctl enable httpd # 设置 Apache 开机自启 systemctl start httpd # 启动 Apache二、安装 AWStats࿰…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?
论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
NPOI Excel用OLE对象的形式插入文件附件以及插入图片
static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...
