Remora
Remora
Remora 模型能够独立于碱基识别过程预测甲基化/修饰碱基的状态。Remora 仓库专注于准备修饰碱基训练数据和训练修饰碱基模型。此外,还提供了一些用于运行 Remora 模型和调查原始信号的功能。对于生产环境中的修饰碱基识别,建议使用 Dorado <https://github.com/nanoporetech/dorado>。对于推荐的修饰碱基下游处理,建议使用 modkit <https://github.com/nanoporetech/modkit>。对于从“随机序列”中进行更高级的修饰碱基数据准备,请参阅 Betta 发布社区说明 <https://community.nanoporetech.com/posts/betta-tool-release>_,并通过客户支持(customer.support@nanoporetech.com)咨询访问权限。
安装
从 pypi 安装:
pip install ont-remora
从 GitHub 源代码安装以进行开发:
git clone git@github.com:nanoporetech/remora.git
pip install -e remora/[tests]
建议在虚拟环境中安装 Remora。例如:
python3 -m venv venv; source venv/bin/activate
对于使用 torch 进行 GPU 优化,请确保安装了与系统 GPU/CUDA 驱动程序兼容的 torch 版本。请注意,Remora 不会尝试解决正确的 torch 版本。有关兼容的驱动程序和安装说明,请参阅 torch 安装页面 <https://pytorch.org/get-started/locally/>_。
例如,要使用 CUDA 11.8 驱动程序安装 Remora,可以使用以下命令:
pip install torch --index-url https://download.pytorch.org/whl/cu118
pip install ont-remora
使用 -h 标志查看任何 Remora 子命令的帮助信息。
入门指南
Remora 模型通过锚定在纳米孔读取的参考序列或标准碱基识别结果上来预测修饰碱基。
Remora 训练/预测输入单元(称为“块”)由以下部分组成:
- 归一化信号片段
- 与信号片段相关的标准碱基
- 这两者之间的映射关系
块的信号长度在数据准备/模型训练时定义,并保存在 Remora 模型中,以便在推理时以相同方式提取块。块内定义了一个固定位置作为“焦点位置”,围绕该位置提取固定长度的信号块。默认情况下,该位置是模型正在质询的“焦点碱基”的中心。
标准碱基和信号映射(即“移动
相关文章:
Remora
Remora Remora 模型能够独立于碱基识别过程预测甲基化/修饰碱基的状态。Remora 仓库专注于准备修饰碱基训练数据和训练修饰碱基模型。此外,还提供了一些用于运行 Remora 模型和调查原始信号的功能。对于生产环境中的修饰碱基识别,建议使用 Dorado <https://github.com/na…...
MySQL中将一个字符串字段按层级树状展开
水善利万物而不争,处众人之所恶,故几于道💦 文章目录 需求1.分析2.实现3.思路刨析表结构和数据 需求 数据库中有个字段如下 如何将其转换为如下形式: 1.分析 1.他的层级个数是不确定的,也就是说有的有2层有的有5…...
vue面试题8|[2024-11-14]
问题1:什么是渐进式框架? vue.js router vuex element ...插件 vue.js 渐0 router 渐1 vuex 渐2 vue.js只是一个核心库,比如我再添加一个router或者vuex,不断让项目壮大,就是渐进式框…...
ARM(安谋) China处理器
0 Preface/Foreword 0.1 参考博客 Cortex-M23/M33与STAR-MC1星辰处理器 ARM China,2018年4月established,独立运行。 1 处理器类型 1.1 周易AIPU 1.2 STAR-MC1(星辰处理器) STAT-MC1,主要为满足AIOT应用性能、功…...
基于python Django的boss直聘数据采集与分析预测系统,爬虫可以在线采集,实时动态显示爬取数据,预测基于技能匹配的预测模型
本系统是基于Python Django框架构建的“Boss直聘”数据采集与分析预测系统,旨在通过技能匹配的方式对招聘信息进行分析与预测,帮助求职者根据自身技能找到最合适的职位,同时为招聘方提供更精准的候选人推荐。系统的核心预测模型基于职位需求技…...
MATLAB实现GARCH(广义自回归条件异方差)模型计算VaR(Value at Risk)
MATLAB实现GARCH(广义自回归条件异方差)模型计算VaR(Value at Risk) 1.计算模型介绍 使用GARCH(广义自回归条件异方差)模型计算VaR(风险价值)时,方差法是一个常用的方法。GARCH模型能够捕捉到金融时间序列数据中的波…...
深入Linux基础:文件系统与进程管理详解
在Linux运维领域,文件系统和进程管理是两个至关重要的基础知识。理解它们的原理和实际操作,不仅有助于我们更高效地管理服务器,还能快速定位问题、优化性能。本文将带你全面了解这两大模块,并配以示例代码进行讲解,帮助…...
缓存及其不一致
在实际开发过程中,一般都会遇到缓存,像本地缓存(直接在程序里搞个map也可以,但是可能会随着数据的增长出现OOM,建议使用正经的本地缓存框架,因为自己实现淘汰策略啥的挺费劲的)、分布式缓存&…...
Leetcode 有效的数独
这段代码解决的是 验证一个数独是否有效 的问题,其算法思想是基于 规则校验和状态记录。具体思想如下: 算法思想 核心目标: 检查每个数字在 同一行、同一列 和 同一个 3x3 子格 中是否重复。 状态记录: 使用 3 个布尔二维数组分别…...
《Java核心技术 卷I》用户界面中首选项API
首选项API 在桌面程序中,通常都会存储用户首选项,如用户最后处理的文件、窗口的最后位置等。 利用Properties类可以很容易的加载和保存程序的配置信息,但有以下缺点: 有些操作系统没有主目录概念,很难为匹配文件找到…...
Android 中的 Zygote 和 Copy-on-Write 机制详解
在 Android 系统中,Zygote 是一个关键的进程,几乎所有的应用进程都是通过它 fork(派生)出来的。通过 Zygote 启动新进程的方式带来了显著的性能优势,这得益于 fork 操作和 Linux 中的 Copy-on-Write(COW&am…...
【人工智能】从零开始用Python实现逻辑回归模型:深入理解逻辑回归的原理与应用
解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 逻辑回归是一种经典的统计学习方法,用于分类问题尤其是二分类问题。它通过学习数据的特征和目标标签之间的…...
推荐一款功能强大的光学识别OCR软件:Readiris Dyslexic
Readiris Dyslexic是一款功能强大的光学识别OCR软件,可以扫描任何纸质文档并将其转换为完全可编辑的数字文件(Word,Excel,PDF),然后用你喜欢的编辑器进行编辑。该软件提供了一种轻松创建,修改和签名PDF的完整解决方法&…...
Python爬虫----python爬虫基础
一、python爬虫基础-爬虫简介 1、现实生活中实际爬虫有哪些? 2、什么是网络爬虫? 3、什么是通用爬虫和聚焦爬虫? 4、为什么要用python写爬虫程序 5、环境和工具 二、python爬虫基础-http协议和chrome抓包工具 1、什么是http和https协议…...
css-50 Projects in 50 Days(3)
html <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>旋转页面</title><link rel"sty…...
另外一种缓冲式图片组件的用法
文章目录 1. 概念介绍2. 使用方法2.1 基本用法2.2 缓冲原理3. 示例代码4. 内容总结我们在上一章回中介绍了"FadeInImage组件"相关的内容,本章回中将介绍CachedNetworkImage组件.闲话休提,让我们一起Talk Flutter吧。 1. 概念介绍 我们在本章回中介绍的CachedNetwo…...
字节青训-小C的外卖超时判断、小C的排列询问
目录 一、小C的外卖超时判断 问题描述 测试样例 解题思路: 问题理解 数据结构选择 算法步骤 最终代码: 运行结果: 二、小C的排列询问 问题描述 测试样例 最终代码: 运行结果: 编辑 一、小C的外卖超时判断…...
PHP 伪静态详解及实现方法
概述 在现代 Web 开发中,URL 的设计对用户体验和搜索引擎优化(SEO)至关重要。动态 URL 虽然功能强大,但往往显得冗长且不友好。伪静态(URL 重写)技术通过将动态 URL 转换为静态样式,不仅提高了…...
Spring Boot 简单预览PDF例子
目录 前言 一、引入依赖 二、使用步骤 1.创建 Controller 处理 PDF 生成和预览 2.创建预览页面 总结 前言 使用 Spring Boot 创建一个生成 PDF 并进行预览的项目,你可以按以下步骤进行。我们将使用 Spring Boot、Thymeleaf、iText 等技术来完成这个任务。 一、引入…...
【魔珐有言-注册/登录安全分析报告-无验证方式导致安全隐患】
前言 由于网站注册入口容易被机器执行自动化程序攻击,存在如下风险: 暴力破解密码,造成用户信息泄露,不符合国家等级保护的要求。短信盗刷带来的拒绝服务风险 ,造成用户无法登陆、注册,大量收到垃圾短信的…...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...
MVC 数据库
MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...
