Flutter中sqflite的使用案例
目录
引言
安装sqflite
创建表
查询数据
添加数据
删除数据
更新数据
完整使用案例
引言
随着移动应用的发展,本地数据存储成为了一个不可或缺的功能。在Flutter中,sqflite
是一个非常流行且强大的SQLite插件,它允许开发者在移动设备上轻松地进行数据库操作。本文将通过具体的使用案例,详细介绍如何在Flutter项目中集成和使用 sqflite
进行数据存储和查询。
安装sqflite
首先,你需要在 pubspec.yaml
文件中添加 sqflite
依赖:
dependencies:flutter:sdk: fluttersqflite: ^2.3.3+1
然后运行 flutter pub get
来安装依赖,或者直接执行下面的命令
flutter pub add sqflite
创建表
// 创建表Future<void> _onCreate(Database db, int version) async {await db.execute('''CREATE TABLE Domain (id INTEGER PRIMARY KEY AUTOINCREMENT,url TEXT)''');}
查询数据
// 查看表的数据Future<List<Map<String, dynamic>>> getItemsFromTable() async {Database db = await database;return await db.query("Domain");}
// 查看存在某一条数据Future<bool> checkIfQrExists(String url) async {Database db = await database;List<Map<String, dynamic>> results = await db.query('Domain',where: 'url= ?',whereArgs: [url],);return results.isNotEmpty;}
添加数据
Future<void> insertDomain(String url) async {Database db = await database;await db.insert('Domain', {'url': url,});}
删除数据
Future<void> deleteUrl(String url) async {final db = await database;await db.delete('Domain',where: 'url = ?',whereArgs: [url],);
}
更新数据
Future<void> updateUrl(Map<String, dynamic> domain, String url) async {final db = await database;await db.update('Domain',domain,where: 'url = ?',whereArgs: [url],);
}
完整使用案例
import 'package:sqflite/sqflite.dart';
import 'package:path/path.dart';class DatabaseHelper {static final DatabaseHelper _instance = DatabaseHelper._internal();factory DatabaseHelper() => _instance;static Database? _database;static const int databaseVersion = 2;DatabaseHelper._internal();Future<Database> get database async {if (_database != null) return _database!;_database = await _initDatabase();return _database!;}Future<Database> _initDatabase() async {// 初始化操作String path = join(await getDatabasesPath(), 'app_database.db');return await openDatabase(path,version: databaseVersion,onCreate: _onCreate,onUpgrade: _onUpgrade,);}// 创建表Future<void> _onCreate(Database db, int version) async {await db.execute('''CREATE TABLE Domain (id INTEGER PRIMARY KEY AUTOINCREMENT,url TEXT)''');}Future<void> _onUpgrade(Database db, int oldVersion, int newVersion) async {print("版本号为$oldVersion");if (oldVersion < 2) {// 更新数据库的操作}}// 查看表的数据Future<List<Map<String, dynamic>>> getItemsFromTable() async {Database db = await database;return await db.query("Domain");}// 查看存在某一条数据Future<bool> checkIfQrExists(String url) async {Database db = await database;List<Map<String, dynamic>> results = await db.query('Domain',where: 'url= ?',whereArgs: [url],);return results.isNotEmpty;}// 增加一条数据Future<void> insertDomain(String url) async {Database db = await database;await db.insert('Domain', {'url': url,});}// 更新一条数据Future<void> updateUrl(Map<String, dynamic> domain, String url) async {final db = await database;await db.update('Domain',domain,where: 'url = ?',whereArgs: [url],);}
}
使用时
DatabaseHelper dbHelper = DatabaseHelper();Future<void> getDatabaseData() async {List<Map<String, dynamic>> data = await dbHelper.getItemsFromTable();for (var item in data) {print('Item: ${item.toString()}');}}
相关文章:
Flutter中sqflite的使用案例
目录 引言 安装sqflite 创建表 查询数据 添加数据 删除数据 更新数据 完整使用案例 引言 随着移动应用的发展,本地数据存储成为了一个不可或缺的功能。在Flutter中,sqflite 是一个非常流行且强大的SQLite插件,它允许开发者在移动设备…...

【2024 Optimal Control 16-745】【Lecture 2】integrators.ipynb功能分析
代码功能分析 导入库和项目设置 import Pkg; Pkg.activate(__DIR__); Pkg.instantiate()功能:激活当前文件夹为 Julia 项目环境,并安装当前项目中缺失的依赖包。 import Pkg: 导入 Julia 的包管理模块 Pkg,用于管理项目依赖。 …...
【linux】ubuntu下常用快捷键【笔记】
环境 硬件:通用PC 系统:Ubuntu 20.04 软件 : 打开终端窗口:Ctrl Alt T 关闭当前窗口:Alt F4 改变窗口大小:Alt F8 移动窗口: Alt F7 配合 “←”、“→”、“↑”、“↓”来移动窗口 …...
【Linux】常用命令练习
一、常用命令 1、在/hadoop目录下创建src和WebRoot两个文件夹 分别创建:mkdir -p /hadoop/src mkdir -p /hadoop/WebRoot 同时创建:mkdir -p /hadoop/{src,WebRoot}2、进入到/hadoop目录,在该目录下创建.classpath和README文件 分别创建&am…...

力扣-Hot100-数组【算法学习day.37】
前言 ###我做这类文档一个重要的目的还是给正在学习的大家提供方向(例如想要掌握基础用法,该刷哪些题?)我的解析也不会做的非常详细,只会提供思路和一些关键点,力扣上的大佬们的题解质量是非常非常高滴&am…...

表格不同类型的数据如何向量化?
在进行机器学习项目时,首先需要获取数据,这些数据可以来自数据库、API、网络抓取,或从CSV、Excel等文件中读取。数据可能包含数值、文本和类别等多种特征,但原始数据通常无法直接用于训练模型。 数据预处理包括清洗、填补缺失值和…...

成都栩熙酷,电商服务新选择
在当今数字经济蓬勃发展的时代,电商平台已成为推动商业创新、促进消费升级的重要力量。抖音小店,作为短视频与电商深度融合的产物,凭借其独特的社交属性和内容营销优势,迅速吸引了大量用户和商家的关注。在这场变革中,…...

【java基础】微服务篇
参考黑马八股视频。 目录 Spring Cloud 5大组件 注册中心 负载均衡 限流 CAP和BASE 分布式事务解决方案 分布式服务的接口幂等性 分布式任务调度 Spring Cloud 5大组件 注册中心 Eureka的作用 健康监控 负载均衡 限流 漏桶固定速率,令牌桶不限速 CAP和BA…...

【LLM训练系列02】如何找到一个大模型Lora的target_modules
方法1:观察attention中的线性层 import numpy as np import pandas as pd from peft import PeftModel import torch import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel, BitsAndBytesConfig from typ…...

uni-app快速入门(八)--常用内置组件(上)
uni-app提供了一套基础组件,类似HTML里的标签元素,不推荐在uni-app中使用使用div等HTML标签。在uni-app中,对应<div>的标签是view,对应<span>的是text,对应<a>的是navigator,常用uni-app…...

基于Amazon Bedrock:一站式多模态数据处理新体验
目录 引言 关于Amazon Bedrock 基础模型体验 1、进入环境 2、发现模型及快速体验 3、打开 Amazon Bedrock 控制台 4、通过 Playgrounds 体验模型 (1)文本生成 (2)图片生成 关于资源清理 结束语 引言 在云计算和人工智能…...
FAX动作文件优化脚本(MAX清理多余关键帧插件)
大较好,为大家介绍一个节省FBX容量的插件!只保留有用的动画轴向,其他不参与动画运动的清除! 一.插件目的:: 1.我们使用的U3D引擎产生的游戏资源包容量太大,故全方位优化动画资源; 2.在max曲线编辑器内,点取轴向太过麻烦,费事,直观清除帧大大提高效率。 如: 二:…...

Chapter 2 - 16. Understanding Congestion in Fibre Channel Fabrics
Transforming an I/O Operation to FC frames A read or write I/O operation (Figure 2-28) between an initiator and a target undergoes a series of transformations before being transmitted on a Fibre Channel link. 启动程序和目标程序之间的读取或写入 I/O 操作(图…...
mysql数据库(六)pymysql、视图、触发器、存储过程、函数、流程控制、数据库连接池
pymysql、视图、触发器、存储过程、函数、流程控制、数据库连接池 文章目录 pymysql、视图、触发器、存储过程、函数、流程控制、数据库连接池一、pymysql二、视图三、触发器四、存储过程五、函数六、流程控制七、数据库连接池 一、pymysql 可以使用pip install pymysql安装py…...
RFdiffusion EuclideanDiffuser类解读
EuclideanDiffuser 是 RFdiffusion 中的一个关键类,专门设计用于对**三维空间中的点(如蛋白质的原子坐标)**进行扩散处理。它通过逐步向这些点添加噪音来实现扩散过程,从而为扩散模型提供输入数据,并通过逆扩散还原这些数据。 get_beta_schedule函数源代码 def get_beta…...
Flutter实现气泡提示框学习
前置知识点学习 GlobalKey GlobalKey 是 Flutter 中一个非常重要的概念,它用于唯一标识 widget 树中的特定 widget,并提供对该 widget 的访问。这在需要跨越 widget 树边界进行交互或在 widget 树重建时保持状态时尤其有用。 GlobalKey 的作用 唯一标…...

vue3 路由守卫
在Vue 3中,路由守卫是一种控制和管理路由跳转的机制。它允许你在执行导航前后进行一些逻辑处理,比如权限验证、数据预取等,从而增强应用的安全性和效率。路由守卫分为几种不同的类型,每种类型的守卫都有其特定的应用场景。 其实路…...

【MATLAB源码-第218期】基于matlab的北方苍鹰优化算法(NGO)无人机三维路径规划,输出做短路径图和适应度曲线.
操作环境: MATLAB 2022a 1、算法描述 北方苍鹰优化算法(Northern Goshawk Optimization,简称NGO)是一种新兴的智能优化算法,灵感来源于北方苍鹰的捕猎行为。北方苍鹰是一种敏捷且高效的猛禽,广泛分布于北…...

如何控制自己玩手机的时间?两台苹果手机帮助自律
对一些人来说,被智能手机“绑架”是一件心甘情愿的事,和它相处的一天中,不必面对现实的压力,它就像个“舒适区”。这是因为在使用手机的过程中,应用程序(尤其是游戏和社交媒体应用)会不断刺激大…...

【java-Neo4j 5开发入门篇】-最新Java开发Neo4j
系列文章目录 前言 上一篇文章讲解了Neo4j的基本使用,本篇文章对Java操作Neo4j进行入门级别的阐述,方便读者快速上手对Neo4j的开发。 一、开发环境与代码 1.docker 部署Neo4j #这里使用docker部署Neo4j,需要镜像加速的需要自行配置 docker run --name…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...

【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...

Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...

全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...

初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...