当前位置: 首页 > news >正文

stable diffusion生成模型

1、stable diffusion

Stable Diffusion 是一种扩散模型,基于对图像的逐步去噪过程训练和生成。它的核心包括以下几个步骤:

  • 扩散过程(Diffusion Process)

在训练时,向真实图像逐步添加噪声,最终将其变为纯随机噪声。这是一个正向过程,目的是学习如何将复杂的图像分解成随机噪声。

  • 逆扩散过程(Denoising Process)

模型训练的目标是学习从纯噪声中逐步还原出真实图像。这需要一个条件生成模型(如 U-Net),结合特定的条件(如文本描述)对噪声进行逐步去噪。

  • 条件输入(Conditioning)

Stable Diffusion 是一个条件生成模型,可以根据输入的文本(通过 CLIP 模型编码的文本嵌入)或其他条件(如已有的图像)生成特定的图像。

  • 潜空间表示(Latent Space Representation)

Stable Diffusion 不直接对高分辨率图像操作,而是使用预训练的 VAE(变分自编码器)将图像压缩到潜空间中。生成和操作都发生在这个

相关文章:

stable diffusion生成模型

1、stable diffusion Stable Diffusion 是一种扩散模型,基于对图像的逐步去噪过程训练和生成。它的核心包括以下几个步骤: 扩散过程(Diffusion Process)在训练时,向真实图像逐步添加噪声,最终将其变为纯随机噪声。这是一个正向过程,目的是学习如何将复杂的图像分解成随…...

分治法的魅力:高效解决复杂问题的利器

文章目录 分治法 (Divide and Conquer) 综合解析一、基本原理二、应用场景及详细分析1. 排序算法快速排序 (Quicksort)归并排序 (Mergesort) 2. 大整数运算大整数乘法 3. 几何问题最近点对问题 4. 字符串匹配KMP算法的优化版 三、优点四、局限性五、分治法与动态规划的对比六、…...

Spring IOC实战指南:从零到一的构建过程

Spring 优点: 方便解耦,简化开发。将所有对象创建和依赖关系维护交给 Spring 管理(IOC 的作用)AOP 切面编程的支持。方便的实现对程序进行权限的拦截、运行监控等功能(可扩展性)声明式事务的支持。只需通过配置就可以完成对事务的管理,无需手…...

3.langchain中的prompt模板 (few shot examples in chat models)

本教程将介绍如何使用LangChain库和智谱清言的 GLM-4-Plus 模型来理解和推理一个自定义的运算符(例如使用鹦鹉表情符号🦜)。我们将通过一系列示例来训练模型,使其能够理解和推断该运算符的含义。 环境准备 首先,确保…...

量子感知机

神经网络类似于人类大脑,是模拟生物神经网络进行信息处理的一种数学模型。它能解决分类、回归等问题,是机器学习的重要组成部分。量子神经网络是将量子理论与神经网络相结合而产生的一种新型计算模式。1995年美国路易斯安那州立大学KAK教授首次提出了量子…...

VM虚拟机装MAC后无法联网,如何解决?

✨在vm虚拟机上,给虚拟机MacOS设置网络适配器。选择NAT模式用于共享主机的IP地址 ✨在MacOS设置中设置网络 以太网 使用DHCP ✨回到本地电脑上,打开 服务,找到VMware DHCP和VMware NAT,把这两个服务打开,专一般问题就…...

IDEA 基本设置

设置主题 设置字体 设置编码格式 改变字体大小 开启 按住 ctrl 滚轮 改变字体大小。 开启自动编译...

Chrome 浏览器 131 版本新特性

Chrome 浏览器 131 版本新特性 一、Chrome 浏览器 131 版本更新 1. 在 iOS 上使用 Google Lens 搜索 自 Chrome 126 版本以来,用户可以通过 Google Lens 搜索屏幕上看到的任何图片或文字。 要使用此功能,请访问网站,并点击聚焦时出现在地…...

使用php和Xunsearch提升音乐网站的歌曲搜索效果

文章精选推荐 1 JetBrains Ai assistant 编程工具让你的工作效率翻倍 2 Extra Icons:JetBrains IDE的图标增强神器 3 IDEA插件推荐-SequenceDiagram,自动生成时序图 4 BashSupport Pro 这个ides插件主要是用来干嘛的 ? 5 IDEA必装的插件&…...

计算机毕设-基于springboot的高校网上缴费综合务系统视频的设计与实现(附源码+lw+ppt+开题报告)

博主介绍:✌多个项目实战经验、多个大型网购商城开发经验、在某机构指导学员上千名、专注于本行业领域✌ 技术范围:Java实战项目、Python实战项目、微信小程序/安卓实战项目、爬虫大数据实战项目、Nodejs实战项目、PHP实战项目、.NET实战项目、Golang实战…...

STL关联式容器之map

map的特性是&#xff0c;所有元素都会根据元素的键值自动被排序。map的所有元素都是pair&#xff0c;同时拥有实值(value)和键值(key)。pair的第一元素被视为键值&#xff0c;第二元素被视为实值。map不允许两个元素拥有相同的键值。下面是<stl_pair.h>中pair的定义 tem…...

【HarmonyOS】鸿蒙应用唤起系统相机拍照

【HarmonyOS】鸿蒙应用唤起系统相机拍照 方案一&#xff1a; 官方推荐的方式&#xff0c;使用CameraPicker来调用安全相机进行拍照。 let pathDir getContext().filesDir;let fileName ${new Date().getTime()}let filePath pathDir /${fileName}.tmpfileIo.createRandomA…...

Linux系统使用valgrind分析C++程序内存资源使用情况

内存占用是我们开发的时候需要重点关注的一个问题&#xff0c;我们可以人工根据代码推理出一个消耗内存较大的函数&#xff0c;也可以推理出大概会消耗多少内存&#xff0c;但是这种方法不仅麻烦&#xff0c;而且得到的只是推理的数据&#xff0c;而不是实际的数据。 我们可以…...

Java基础夯实——2.7 线程上下文切换

线程上下文切换&#xff08;Thread Context Switching&#xff09;是操作系统在多线程环境中&#xff0c;切换CPU从执行一个线程的上下文到另一个线程的上下文的过程。这种切换是实现多线程并发执行的核心机制之一。 1 上下文: 线程的上下文指线程在某一时刻的执行状态,如&am…...

死锁相关习题 10道 附详解

2022 设系统中有三种类型的资源(A,B,C)和五个进程(P1,P2,P3,P4,P5)&#xff0c;A资源的数量是17&#xff0c;B资源的数量是6&#xff0c;C资源的数量是19。在T0时刻系统的状态&#xff1a; 最大资源需求量已分配资源量A&#xff0c;B&#xff0c;CA&#xff0c;B&#xff0c;…...

VisionPro 机器视觉案例 之 彩色保险丝个数统计

第十四篇 机器视觉案例 之 彩色保险丝颜色识别个数统计 文章目录 第十四篇 机器视觉案例 之 彩色保险丝颜色识别个数统计1.案例要求2.实现思路2.1 方法一 颜色分离工具CogColorSegmenterTool将每一种颜色分离出来&#xff0c;得到对应的单独图像&#xff0c;使用斑点工具CogBlo…...

go-zero(七) RPC服务和ETCD

go-zero 实现 RPC 服务 在实际的开发中&#xff0c;我们是通过RPC来传递数据的&#xff0c;下面我将通过一个简单的示例&#xff0c;说明如何使用go-zero框架和 Protocol Buffers 定义 RPC 服务。 一、生成 RPC项目 在这个教程中&#xff0c;我们根据user.api文件&#xff0…...

Jenkins + gitee 自动触发项目拉取部署(Webhook配置)

目录 前言 Generic Webhook Trigger 插件 下载插件 ​编辑 配置WebHook 生成tocken 总结 前言 前文简单介绍了Jenkins环境搭建&#xff0c;本文主要来介绍一下如何使用 WebHook 触发自动拉取构建项目&#xff1b; Generic Webhook Trigger 插件 实现代码推送后&#xff0c;触…...

043 商品详情

文章目录 详情页数据表结构voSkuItemVo.javaSkuItemSaleAttrVo.javaAttrValueAndSkuIdVo.javaSpuAttrGroupVo.javaGroupAttrParamVo.java pom.xmlSkuSaleAttrValueDao.xmlSkuSaleAttrValueDao.javaAttrGroupDao.xmlAttrGroupServiceImpl.javaSkuInfoServiceImpl.javaSkuSaleAtt…...

【人工智能】Python与Scikit-learn的模型选择与调参:用GridSearchCV和RandomizedSearchCV提升模型性能

解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 在机器学习建模过程中,模型的表现往往取决于参数的选择与优化。Scikit-learn提供了便捷的工具GridSearchCV和RandomizedSearchCV,帮助我们在参数空间中搜索最佳组合以提升模型表现。本文将从理论和实践两个角度…...

XML Group端口详解

在XML数据映射过程中&#xff0c;经常需要对数据进行分组聚合操作。例如&#xff0c;当处理包含多个物料明细的XML文件时&#xff0c;可能需要将相同物料号的明细归为一组&#xff0c;或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码&#xff0c;增加了开…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误&#xff0c;它们的含义、原因和解决方法都有显著区别。以下是详细对比&#xff1a; 1. HTTP 406 (Not Acceptable) 含义&#xff1a; 客户端请求的内容类型与服务器支持的内容类型不匹…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

在 Spring Boot 中使用 JSP

jsp&#xff1f; 好多年没用了。重新整一下 还费了点时间&#xff0c;记录一下。 项目结构&#xff1a; pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...