当前位置: 首页 > news >正文

【人工智能】Python与Scikit-learn的模型选择与调参:用GridSearchCV和RandomizedSearchCV提升模型性能

解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界

在机器学习建模过程中,模型的表现往往取决于参数的选择与优化。Scikit-learn提供了便捷的工具GridSearchCVRandomizedSearchCV,帮助我们在参数空间中搜索最佳组合以提升模型表现。本文将从理论和实践两个角度出发,详解这两种方法的工作原理和使用技巧。通过大量的代码示例和中文注释,本文将逐步教读者如何设置参数网格、定义评分指标、在交叉验证的基础上进行参数搜索,并结合多种场景展示如何优化模型,从而提高机器学习模型的精度和泛化能力。


目录

  1. 模型选择与调参的重要性
  2. Scikit-learn的模型选择工具简介
  3. GridSearchCV的原理与使用方法
  4. RandomizedSearchCV的原理与使用方法
  5. 实战:使用GridSearchCV优化SVM分类器
  6. 实战:使用RandomizedSearchCV优化随机森林
  7. 自定义评分指标与参数调优
  8. GridSearchCV与RandomizedSearchCV的优缺点比较
  9. 结合多种模型选择与调参方法的高级应用
  10. 总结与展望

正文

1. 模型选择与调参的重要性

在机器学习任务中,选择合适的模型和优化模型参数是至关重要的。模型的性能不仅依赖于数据质量和特征选择,也取决于超参数的合理设置。例如,在支持向量机(SVM)中,核函数和正则化参数会直接影响模型的分类边界。若参数设置不当,即使数据质量高,也可能导致模型的准确率低或泛化能力差。

2. Scikit-learn的模型选择工具简介

Scikit-learn是Python中广泛使用的机器学习库,提供了丰富的模型选择与调参工具,其中最常用的便是GridSearchCVRandomizedSearchCV。这两个工具通过交叉验证的方式在参数空间中寻找最佳组合,从而提升模型性能。以下是两者的基本定义:

  • GridSearchCV:穷举法,遍历参数网格中的所有可能组合,适合参数数量较少的情况。
  • RandomizedSearchCV:随机采样法,在参数空间中随机选择一定数量的参数组合,适合参数较多的情况。
3. GridSearchCV的原理与使用方法

GridSearchCV是一种穷举搜索方法,它会遍历预定义的参数网格中的每一个组合,并通过交叉验证计算每个组合的平均得分。对于少量参数或参数范围较小的模型,GridSearchCV是非常有效的。以下代码展示了如何使用GridSearchCV优化SVM模型。

示例代码:使用GridSearchCV优化SVM模型
from sklearn.svm import SVC
from sklearn.datasets import load_iris
from sklearn.model_selection import GridSearchCV, train_test_split
from sklearn.metrics import accuracy_score# 加载数据并分割训练集与测试集
data = load_iris()
X_train, X_test, y_train, y_test = train_test_split(data.data, data.target, test_size=0.2, random_state=42)# 定义SVM模型和参数网格
svm = SVC()
param_grid = {'C': [0.1, 1, 10],'kernel': ['linear', 'rbf', 'poly'],'gamma': ['scale', 'auto']
}# 使用GridSearchCV进行网格搜索
grid_search = GridSearchCV(svm,

相关文章:

【人工智能】Python与Scikit-learn的模型选择与调参:用GridSearchCV和RandomizedSearchCV提升模型性能

解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 在机器学习建模过程中,模型的表现往往取决于参数的选择与优化。Scikit-learn提供了便捷的工具GridSearchCV和RandomizedSearchCV,帮助我们在参数空间中搜索最佳组合以提升模型表现。本文将从理论和实践两个角度…...

深入探讨 Puppeteer 如何使用 X 和 Y 坐标实现鼠标移动

背景介绍 现代爬虫技术中,模拟人类行为已成为绕过反爬虫系统的关键策略之一。无论是模拟用户点击、滚动,还是鼠标的轨迹移动,都可以为爬虫脚本带来更高的“伪装性”。在众多的自动化工具中,Puppeteer作为一个无头浏览器控制库&am…...

<OS 有关> ubuntu 24 不同版本介绍 安装 Vmware tools

原因 想用 apt-get download 存到本地 / NAS上,减少网络流浪。 看到 VMware 上的确实有 ubuntu,只是版本是16。 ubuntu 版本比较:LTS vs RR LTS: Long-Term Support 长周期支持, 一般每 2 年更新,会更可靠与更稳定…...

C#调用JAVA

参考教程:使用IKVMC转换Jar为dll动态库(含idea打包jar方法)-CSDN博客 已经实践过,好使。...

JavaEE-多线程基础知识

文章目录 前言与回顾创建一个多线程线程的创建以及运行机制简述step1: 继承Thread类step2: 实现Runable接口step3: 基于step1使用匿名内部类step4: 基于step2使用匿名内部类step5: 基于step4使用lambda表达式(推荐) Thread的常见方法关于jconsole监视线程的工具构造方法解析获取…...

Pulid:pure and lightning id customization via contrastive alignment

1.introduction 基于微调的方案,对每个id进行定制需要花费数十分钟。另一项研究则放弃了对每个id进行微调,而是选择在一个庞大的肖像数据集上预训练一个id适配器。这些方法通常利用编码器例如clip来提取id特征,提取的特征随后以特定方式例如嵌入到cross attention集成到基础…...

什么是GraphQL,有什么特点

什么是GraphQL? GraphQL 是一种用于 API(应用程序编程接口)的查询语言,由 Facebook 在 2012 年开发,并于 2015 年开源。它提供了一种更高效、强大的方式来获取和操作数据,与传统的 RESTful API 相比&#…...

Java项目-基于SpringBoot+vue的租房网站设计与实现

博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇…...

【SQL Server】华中农业大学空间数据库实验报告 实验三 数据操作

1.实验目的 熟悉了解掌握SQL Server软件的基本操作与使用方法,以及通过理论课学习与实验参考书的帮助,熟练掌握使用T-SQL语句和交互式方法对数据表进行插入数据、修改数据、删除数据等等的操作;作为后续实验的基础,根据实验要求重…...

【大数据学习 | Spark】RDD的概念与Spark任务的执行流程

1. RDD的设计背景 在实际应用中,存在许多迭代式计算,这些应用场景的共同之处是,不同计算阶段之间会重用中间结果,即一个阶段的输出结果会作为下一个阶段的输入。但是,目前的MapReduce框架都是把中间结果写入到HDFS中&…...

ruoyi框架完成分库分表,按月自动建表功能

前提 这个分库分表功能,按月自动建表,做的比较久了,还没上线,是在ruoyi框架内做的,踩了不少坑,但是已经实现了,就分享一下代码吧 参考 先分享一些参考文章 【若依系列】集成ShardingSphere S…...

Antd中的布局组件

文章目录 一、Layout二、Menu三、Grid栅格 布局组件涉及项目框架的搭建,往往被忽略和低关注,毕竟不是经常用到,但是在调整项目结构的时候往往又需要重新设计布局,所以有必要提前归纳分析; 一、Layout Layout导出Sider,…...

一文详解kafka知识点

目录 1、kafka定义 2、消息队列 2.1、产品选择 2.2、应用场景 2.3、消息队列的两种模式 3、kafka架构 4、kafka生产者 4.1、kafka生产者原理 4.2、kafka生产者异步发送 4.3、同步发送 4.4、分区 4.4.1、kafka分区好处 4.4.2、分区策略 4.4.3、自定义分区 4.5、生成吞…...

C语言基础学习:抽象数据类型(ADT)

基础概念 抽象数据类型(ADT)是一种数据类型,它定义了一组数据以及可以在这组数据上执行的操作,但隐藏了数据的具体存储方式和实现细节。在C语言中,抽象数据类型(ADT)是一种非常重要的概念&…...

提升性能测试效率与准确性:深入解析JMeter中的各类定时器

在软件性能测试领域,Apache JMeter是一款广泛使用的开源工具,它允许开发者模拟大量用户对应用程序进行并发访问,从而评估系统的性能和稳定性。在进行性能测试时,合理地设置请求之间的延迟时间对于模拟真实用户行为、避免服务器过载…...

施密特正交化与单位化的情形

在考研数学的线性代数部分,施密特正交化和单位化是两种不同的处理向量的方法,它们在特定的情况下被使用。以下是详细说明: 施密特正交化的应用场景 施密特正交化(Gram-Schmidt Orthogonalization)是一种从线性无关向…...

ROS机器视觉入门:从基础到人脸识别与目标检测

前言 从本文开始,我们将开始学习ROS机器视觉处理,刚开始先学习一部分外围的知识,为后续的人脸识别、目标跟踪和YOLOV5目标检测做准备工作。我采用的笔记本是联想拯救者游戏本,系统采用Ubuntu20.04,ROS采用noetic。 颜…...

2024 APMCM亚太数学建模C题 - 宠物行业及相关产业的发展分析和策略(详细解题思路)

在当下, 日益发展的时代,宠物的数量应该均为稳步上升,在美国出现了下降的趋势, 中国 2019-2020 年也下降,这部分变化可能与疫情相关。需要对该部分进行必要的解释说明。 问题 1: 基于附件 1 中的数据及您的团队收集的…...

C#里怎么样访问文件时间

C#里怎么样访问文件时间 文件时间也是一个关键信息, 因为很多数据处理需要时间来判断数据的有效性,比如股票中的股价, 它是的权重,是随着时间递减的。 一般来说,超过5年以上的数据,都是可以删除掉了。 或者说超过三年的数据,就需要压缩保存了,这样可以省掉很多磁盘空…...

Cesium教程01_认识View

Cesium 地图视图组件 目录 一、引言二、功能说明三、代码实现 1. 模板结构2. 脚本逻辑3. 样式设计 四、总结 一、引言 在三维地球可视化中,Cesium 是一个强大的开源 JavaScript 库,它能够展示精美的地球和地图应用。本示例展示了如何使用 Vue 组件化…...

【SQL Server】华中农业大学空间数据库实验报告 实验八 存储过程

1.实验目的 通过实验课程与理论课的学习深入理解掌握的存储过程的原理、创建、修改、删除、基本的使用方法、主要用途,并且可以在练习的基础上,熟练使用存储过程来进行数据库的应用程序的设计;深入学习深刻理解与存储过程相关的T-SQL语句的编…...

ArcMap 处理栅格数据的分辨率功能操作

ArcMap 处理栅格数据的分辨率功能操作 一、统一多分辨率栅格数据 1、查看两个栅格数据的分辨率 1)raster1 点击属性 2) raster2 2、统一像元大小 1)点击环境 展示和填写 处理范围 栅格分析 点击确定 3、重采样 让raster1和..2保持一致,即…...

redis7.x源码分析:(4) ae事件处理器(一)

ae模块是redis实现的Reactor模型的封装。它的主要代码实现集中在 ae.c 中,另外还提供了平台相关的io多路复用的封装,它们都实现了一套相同的poll接口,就类似于C中提供了一个接口基类,由针对不同平台的派生类去实现。 // 创建平台…...

【React】React Router:深入理解前端路由的工作原理

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 React Router:深入理解前端路由的工作原理路由的演进历程传统多页面…...

51单片机-独立按键与数码管联动

独立键盘和矩阵键盘检测原理及实现 键盘的分类:编码键盘和非编码键盘 键盘上闭合键的识别由专用的硬件编码器实现,并产生键编码号或键值的称为编码键盘,如:计算机键盘。靠软件编程识别的称为非编码键盘;在单片机组成…...

visual studio 2005的MFC各种线程函数之间的调用关系

在 Visual Studio 2005 的 MFC 程序中的函数和消息机制涉及线程间通信、消息处理以及与窗口消息的交互。接下来我将详细分析以下每个函数的作用、如何使用它们以及它们之间的调用关系。 1. PostThreadMessage(m_iThOpID, MSG_OP_OVER, 0, (LPARAM)iLparm); 函数用途&#xff1…...

网页中调用系统的EXE文件,如打开QQ

遇到一个实际的问题,需要在网页中打开本地的某个工业软件。 通过点击exe文件就可以调用到程序。 比如双击qq的exe就可以启动qq的程序。 那么问题就变成了如何加载exe程序呢? 可以通过Java的 Process process Runtime.getRuntime().exec(command);通过…...

【单点知识】基于PyTorch讲解自动编码器(Autoencoder)

文章目录 0. 前言1. 自动编码器的基本概念1.1 定义1.2 目标1.3 结构 2. PyTorch实现自动编码器2.1 导入必要的库2.2 定义自动编码器模型2.3 加载数据2.4 训练自动编码器 3. 自动编码器的意义4. 自动编码器的应用4.1 图像处理4.2自然语言处理:4.3推荐系统&#xff1a…...

Halo 正式开源: 使用可穿戴设备进行开源健康追踪

在飞速发展的可穿戴技术领域,我们正处于一个十字路口——市场上充斥着各式时尚、功能丰富的设备,声称能够彻底改变我们对健康和健身的方式。 然而,在这些光鲜的外观和营销宣传背后,隐藏着一个令人担忧的现实:大多数这些…...

summernote富文本批量上传音频,视频等附件

普通项目,HTML的summernote富文本批量上传音频,视频等附件(其他附件同理) JS和CSS的引入 <head><th:block th:include"include :: summernote-css" /> </head> <body><th:block th:include"include :: summernote-js" /> …...