当前位置: 首页 > news >正文

【大数据学习 | Spark】RDD的概念与Spark任务的执行流程

1. RDD的设计背景

在实际应用中,存在许多迭代式计算,这些应用场景的共同之处是,不同计算阶段之间会重用中间结果,即一个阶段的输出结果会作为下一个阶段的输入。但是,目前的MapReduce框架都是把中间结果写入到HDFS中,带来了大量的数据复制、磁盘IO和序列化开销。显然,如果能将结果保存在内存当中,就可以大量减少IO。RDD就是为了满足这种需求而出现的,它提供了一个抽象的数据架构,我们不必担心底层数据的分布式特性,只需将具体的应用逻辑表达为一系列转换处理,不同RDD之间的转换操作形成依赖关系,可以实现管道化,从而避免了中间结果的落地存储,大大降低了数据复制、磁盘IO和序列化开销。

2. RDD的概念

RDD(Resilient Distributed Datasets,弹性分布式数据集)代表可并行操作元素不可变分区集合。

一个RDD就是一个分布式对象集合,本质上是一个只读的分区记录集合每个RDD可以分成多个分区,每个分区就是一个数据集片段(HDFS上的块),并且一个RDD的不同分区可以被保存到集群中不同的节点上,从而可以在集群中的不同节点上进行并行计算

RDD提供了一种高度受限的共享内存模型,即RDD是只读的记录分区的集合,不能直接修改,只能基于稳定的物理存储中的数据集来创建RDD,或者通过在其他RDD上执行确定的转换操作(如map、join和groupBy)而创建得到新的RDD。

RDD提供了一组丰富的操作以支持常见的数据运算,分为“行动”(Action)和“转换”(Transformation)两种类型,前者用于执行计算并指定输出的形式,后者指定RDD之间的相互依赖关系。两类操作的主要区别是,转换操作(比如map、filter、groupBy、join等)接受RDD并返回RDD,而行动操作(比如count、collect等)接受RDD但是返回非RDD(即输出一个值或结果)。

RDD典型的执行过程

Spark用Scala语言实现了RDD的API,程序员可以通过调用API实现对RDD的各种操作。RDD典型的执行过程如下:

1)RDD读入外部数据源(或者内存中的集合)进行创建;

2)RDD经过一系列的“转换”操作,每一次都会产生不同的RDD,供给下一个“转换”使用;

3)最后一个RDD经“行动”操作进行处理,并输出到外部数据源(或者变成Scala/JAVA集合或变量)。

需要说明的是,RDD采用了惰性调用,即在RDD的执行过程中,真正的计算发生在RDD的“行动”操作(行动算子底层代码调用了runJob函数),对于“行动”之前的所有“转换”操作,Spark只是记录下“转换”操作应用的一些基础数据集以及RDD生成的轨迹,即相互之间的依赖关系,而不会触发真正的计算。

a0844dd491e547fe8225702380a01647.png

5b2fc5dbf419459ba82dca1f98c68f5a.png

val conf = new SparkConf
val sparkContext = new SparkContext(conf)
val lines :RDD = sparkContext.textFile(logFile)
//lines.filter((a:String) => a.contains("hello world"))
val count = lines.filter(_.contains("hello world")).count()
println(count)

可以看出,一个Spark应用程序,基本是基于RDD的一系列计算操作。

第1行代码用于创建JavaSparkContext对象;

第2行代码从HDFS文件中读取数据创建一个RDD;

第3行代码对fileRDD进行转换操作得到一个新的RDD,即filterRDD;

count()是一个行动操作,用于计算一个RDD集合中包含的元素个数。

这个程序的执行过程如下:

1)创建这个Spark程序的执行上下文,即创建SparkContext对象;

2)从外部数据源(即HDFS文件)中读取数据创建fileRDD对象;

3)构建起fileRDD和filterRDD之间的依赖关系,形成DAG图,这时候并没有发生真正的计算,只是记录转换的轨迹;

4)执行action代码时,count()是一个行动类型的操作,触发真正的计算,开始执行从fileRDD到filterRDD的转换操作,并把结果持久化到内存中,最后计算出filterRDD中包含的元素个数。

3. spark任务的执行过程

每一个应用都是由driver端组成的,并且driver端可以解析用户的代码,并且在集群中并行执行,spark给大家提供了一个编程对象,它是一个抽象的,叫做弹性分布式数据集,这个数据集和一堆数据的集合并且是被分区的,因为分区的数据可以被并行的进行操作,rdd的创建方式有两种 1.读取hdfs的文件 2.在driver的一个集合可以转换为rdd,rdd可以被持久化到内存中,并且rdd可以实现更好的失败恢复容错。

711e8bdb7e874c55a214b920cf31d793.png

为什么rdd是抽象的呢?因为rdd并不存在数据,它是虚拟的,我们在定义逻辑的时候要标识一个节点,表示数据在流动到此处的时候要进行什么样的处理,我们可以理解rdd是一个代理对象。

686d9c3356ae479ba0f6b98e743da76e.png

上述任务执行过程可以划分为两个stage,从创建rdd开始到groupBy的shuffle,划分为一个stage,然后该shuffle到任务执行结束,又是一个stage。后面读源码我们会发现,当出现shuffle时,就要划分出一个阶段。因为业务逻辑发生了变化。

任务的执行和层架关系:

读取hdfs数据的时候映射应该是一个blk块对应一个分区

  • 在一个任务中,一个action算子会生成一个job。(行动算子的源码都会包含runJob函数)
  • 在一个job中存在shuffle算子,比如group sort切分阶段,shuffle+1个阶段。
  • shuffle是任务的划分的重点,前面的任务会将数据放入到自己的本地存储,后续的任务进行数据的拉取。
  • 在一个stage中任务都是管道形式执行的,避免了io,序列化和反序列化,这个就是dag切分的原理。
  • 在一个阶段中分区数量就是task任务的数量,task任务就是一堆非shuffle类算子的整体任务链。
  • 有几个分区就会并行的执行几个task任务。
  • 有几个分区是根据读取的文件来进行适配的,比如有三个blk那么就会生成三个分区,因为我们可以在每个分区中进行处理数据,实现本地化的处理,避免远程io。

我们知道,分区的个数与读取的文件的Split切片数量有关。假如textFile读取文件的大小为400M,则会被物理切分为3个block,因为每个block-size的大小最大为128M,block1为128M,block2为128M,block3为144M。默认逻辑切片split-size的大小与block-size相适配,为128M,所以有三个分区。三个分区就会并行的执行3个task任务。

spark中一个executor可以执行多个task任务。这是通过将executor配置为拥有多个cores来实现的。每个核心可以并行执行一个task。即executor是一个JVM进程,负责在节点上运行任务。可以为executor配置多个核心来并行处理多个任务。

如果分区数多于executor的核心数,某些task必须等待其他task任务完成才能开始执行。

相关文章:

【大数据学习 | Spark】RDD的概念与Spark任务的执行流程

1. RDD的设计背景 在实际应用中,存在许多迭代式计算,这些应用场景的共同之处是,不同计算阶段之间会重用中间结果,即一个阶段的输出结果会作为下一个阶段的输入。但是,目前的MapReduce框架都是把中间结果写入到HDFS中&…...

ruoyi框架完成分库分表,按月自动建表功能

前提 这个分库分表功能,按月自动建表,做的比较久了,还没上线,是在ruoyi框架内做的,踩了不少坑,但是已经实现了,就分享一下代码吧 参考 先分享一些参考文章 【若依系列】集成ShardingSphere S…...

Antd中的布局组件

文章目录 一、Layout二、Menu三、Grid栅格 布局组件涉及项目框架的搭建,往往被忽略和低关注,毕竟不是经常用到,但是在调整项目结构的时候往往又需要重新设计布局,所以有必要提前归纳分析; 一、Layout Layout导出Sider,…...

一文详解kafka知识点

目录 1、kafka定义 2、消息队列 2.1、产品选择 2.2、应用场景 2.3、消息队列的两种模式 3、kafka架构 4、kafka生产者 4.1、kafka生产者原理 4.2、kafka生产者异步发送 4.3、同步发送 4.4、分区 4.4.1、kafka分区好处 4.4.2、分区策略 4.4.3、自定义分区 4.5、生成吞…...

C语言基础学习:抽象数据类型(ADT)

基础概念 抽象数据类型(ADT)是一种数据类型,它定义了一组数据以及可以在这组数据上执行的操作,但隐藏了数据的具体存储方式和实现细节。在C语言中,抽象数据类型(ADT)是一种非常重要的概念&…...

提升性能测试效率与准确性:深入解析JMeter中的各类定时器

在软件性能测试领域,Apache JMeter是一款广泛使用的开源工具,它允许开发者模拟大量用户对应用程序进行并发访问,从而评估系统的性能和稳定性。在进行性能测试时,合理地设置请求之间的延迟时间对于模拟真实用户行为、避免服务器过载…...

施密特正交化与单位化的情形

在考研数学的线性代数部分,施密特正交化和单位化是两种不同的处理向量的方法,它们在特定的情况下被使用。以下是详细说明: 施密特正交化的应用场景 施密特正交化(Gram-Schmidt Orthogonalization)是一种从线性无关向…...

ROS机器视觉入门:从基础到人脸识别与目标检测

前言 从本文开始,我们将开始学习ROS机器视觉处理,刚开始先学习一部分外围的知识,为后续的人脸识别、目标跟踪和YOLOV5目标检测做准备工作。我采用的笔记本是联想拯救者游戏本,系统采用Ubuntu20.04,ROS采用noetic。 颜…...

2024 APMCM亚太数学建模C题 - 宠物行业及相关产业的发展分析和策略(详细解题思路)

在当下, 日益发展的时代,宠物的数量应该均为稳步上升,在美国出现了下降的趋势, 中国 2019-2020 年也下降,这部分变化可能与疫情相关。需要对该部分进行必要的解释说明。 问题 1: 基于附件 1 中的数据及您的团队收集的…...

C#里怎么样访问文件时间

C#里怎么样访问文件时间 文件时间也是一个关键信息, 因为很多数据处理需要时间来判断数据的有效性,比如股票中的股价, 它是的权重,是随着时间递减的。 一般来说,超过5年以上的数据,都是可以删除掉了。 或者说超过三年的数据,就需要压缩保存了,这样可以省掉很多磁盘空…...

Cesium教程01_认识View

Cesium 地图视图组件 目录 一、引言二、功能说明三、代码实现 1. 模板结构2. 脚本逻辑3. 样式设计 四、总结 一、引言 在三维地球可视化中,Cesium 是一个强大的开源 JavaScript 库,它能够展示精美的地球和地图应用。本示例展示了如何使用 Vue 组件化…...

【SQL Server】华中农业大学空间数据库实验报告 实验八 存储过程

1.实验目的 通过实验课程与理论课的学习深入理解掌握的存储过程的原理、创建、修改、删除、基本的使用方法、主要用途,并且可以在练习的基础上,熟练使用存储过程来进行数据库的应用程序的设计;深入学习深刻理解与存储过程相关的T-SQL语句的编…...

ArcMap 处理栅格数据的分辨率功能操作

ArcMap 处理栅格数据的分辨率功能操作 一、统一多分辨率栅格数据 1、查看两个栅格数据的分辨率 1)raster1 点击属性 2) raster2 2、统一像元大小 1)点击环境 展示和填写 处理范围 栅格分析 点击确定 3、重采样 让raster1和..2保持一致,即…...

redis7.x源码分析:(4) ae事件处理器(一)

ae模块是redis实现的Reactor模型的封装。它的主要代码实现集中在 ae.c 中,另外还提供了平台相关的io多路复用的封装,它们都实现了一套相同的poll接口,就类似于C中提供了一个接口基类,由针对不同平台的派生类去实现。 // 创建平台…...

【React】React Router:深入理解前端路由的工作原理

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 React Router:深入理解前端路由的工作原理路由的演进历程传统多页面…...

51单片机-独立按键与数码管联动

独立键盘和矩阵键盘检测原理及实现 键盘的分类:编码键盘和非编码键盘 键盘上闭合键的识别由专用的硬件编码器实现,并产生键编码号或键值的称为编码键盘,如:计算机键盘。靠软件编程识别的称为非编码键盘;在单片机组成…...

visual studio 2005的MFC各种线程函数之间的调用关系

在 Visual Studio 2005 的 MFC 程序中的函数和消息机制涉及线程间通信、消息处理以及与窗口消息的交互。接下来我将详细分析以下每个函数的作用、如何使用它们以及它们之间的调用关系。 1. PostThreadMessage(m_iThOpID, MSG_OP_OVER, 0, (LPARAM)iLparm); 函数用途&#xff1…...

网页中调用系统的EXE文件,如打开QQ

遇到一个实际的问题,需要在网页中打开本地的某个工业软件。 通过点击exe文件就可以调用到程序。 比如双击qq的exe就可以启动qq的程序。 那么问题就变成了如何加载exe程序呢? 可以通过Java的 Process process Runtime.getRuntime().exec(command);通过…...

【单点知识】基于PyTorch讲解自动编码器(Autoencoder)

文章目录 0. 前言1. 自动编码器的基本概念1.1 定义1.2 目标1.3 结构 2. PyTorch实现自动编码器2.1 导入必要的库2.2 定义自动编码器模型2.3 加载数据2.4 训练自动编码器 3. 自动编码器的意义4. 自动编码器的应用4.1 图像处理4.2自然语言处理:4.3推荐系统&#xff1a…...

Halo 正式开源: 使用可穿戴设备进行开源健康追踪

在飞速发展的可穿戴技术领域,我们正处于一个十字路口——市场上充斥着各式时尚、功能丰富的设备,声称能够彻底改变我们对健康和健身的方式。 然而,在这些光鲜的外观和营销宣传背后,隐藏着一个令人担忧的现实:大多数这些…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源&#xff0c;学习文档&#xff0c;以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具&#xff0c;欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...

stm32wle5 lpuart DMA数据不接收

配置波特率9600时&#xff0c;需要使用外部低速晶振...

GraphRAG优化新思路-开源的ROGRAG框架

目前的如微软开源的GraphRAG的工作流程都较为复杂&#xff0c;难以孤立地评估各个组件的贡献&#xff0c;传统的检索方法在处理复杂推理任务时可能不够有效&#xff0c;特别是在需要理解实体间关系或多跳知识的情况下。先说结论&#xff0c;看完后感觉这个框架性能上不会比Grap…...