【LeetCode每日一题】——746.使用最小花费爬楼梯
文章目录
- 一【题目类别】
- 二【题目难度】
- 三【题目编号】
- 四【题目描述】
- 五【题目示例】
- 六【题目提示】
- 七【解题思路】
- 八【时空频度】
- 九【代码实现】
- 十【提交结果】
一【题目类别】
- 数组
二【题目难度】
- 简单
三【题目编号】
- 746.使用最小花费爬楼梯
四【题目描述】
- 给你一个整数数组
cost,其中cost[i]是从楼梯第i个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。 - 你可以选择从下标为
0或下标为1的台阶开始爬楼梯。 - 请你计算并返回达到楼梯顶部的最低花费。
五【题目示例】
-
示例 1:
- 输入:cost = [10,15,20]
- 输出:15
- 解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
- 总花费为 15 。
-
示例 2:
- 输入:cost = [1,100,1,1,1,100,1,1,100,1]
- 输出:6
- 解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
- 总花费为 6 。
六【题目提示】
2 <= cost.length <= 10000 <= cost[i] <= 999
七【解题思路】
- 该题为标准的动态规划题目
- 对于第i个位置,cost[i]为第i个位置向上爬的花费,dp[i]为到达第i个位置所需要的最小的花费,所以可以得到动态转移方程:
- dp[i] = min(cost[i - 1] + dp[i - 1], cost[i - 2] + dp[i - 2])
- 最后返回结果即可
- 具体细节可以参考下面的代码
八【时空频度】
- 时间复杂度: O ( n ) O(n) O(n), n n n为传入的数组的长度
- 空间复杂度: O ( n ) O(n) O(n), n n n为传入的数组的长度
九【代码实现】
- Java语言版
class Solution {public int minCostClimbingStairs(int[] cost) {int n = cost.length;// 动态规划数组int[] dp = new int[n + 1];dp[0] = 0;dp[1] = 0;// 计算爬楼梯的最小花费:到达第 i 层的最小花费由前一层或前两层的最小花费加上当前层的花费决定for (int i = 2; i < (n + 1); i++) {dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);}// 返回结果return dp[n];}
}
- Python语言版
class Solution:def minCostClimbingStairs(self, cost: List[int]) -> int:n = len(cost)# 动态规划数组dp = [0] * (n + 1)# 计算爬楼梯的最小花费:到达第 i 层的最小花费由前一层或前两层的最小花费加上当前层的花费决定for i in range(2, (n + 1)):dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])# 返回结果return dp[n]
- C语言版
int minCostClimbingStairs(int* cost, int costSize)
{// 动态规划数组int* dp = (int *)calloc((costSize + 1), sizeof(int));// 计算爬楼梯的最小花费:到达第 i 层的最小花费由前一层或前两层的最小花费加上当前层的花费决定for (int i = 2; i <= costSize; i++){dp[i] = fmin(cost[i - 1] + dp[i - 1], cost[i - 2] + dp[i - 2]);}int res = dp[costSize];free(dp);// 返回结果return res;
}
十【提交结果】
-
Java语言版

-
Python语言版

-
C语言版

相关文章:
【LeetCode每日一题】——746.使用最小花费爬楼梯
文章目录 一【题目类别】二【题目难度】三【题目编号】四【题目描述】五【题目示例】六【题目提示】七【解题思路】八【时空频度】九【代码实现】十【提交结果】 一【题目类别】 数组 二【题目难度】 简单 三【题目编号】 746.使用最小花费爬楼梯 四【题目描述】 给你一…...
程序里sendStringParametersAsUnicode=true的配置导致sql server cpu使用率高问题处理
一 问题描述 近期生产环境几台sql server从库cpu使用率总是打满,发现抓的带变量值的慢sql,手动代入变量值执行并不慢,秒级返回,不知道问题出在哪里。 二 问题排查 用扩展事件或者sql profiler抓慢sql,抓到了变量值&…...
Vue3 el-table 默认选中 传入的数组
一、效果: 二、官网是VUE2 现更改为Vue3写法 <template><el-table:data"tableData"border striperow-key"id"ref"tableRef":cell-style"{ text-align: center }":header-cell-style"{background: #b7babd…...
最后一个单词的长度
题目详情: 解题思路: 用两个变量分别存储当前值和上次值,就可保证当前移动时记录字符个数,当遇到空格时,这次值保存到上次值,并清空。 代码解析: /* 最后一个单词的长度 */ #include <st…...
2024-11-19 kron积
若A[a11 a12; a21 a22]; B[b11 b12; b21 b22]; 则C[a11*b11 a12*b11 a21*b11 a22*b11; a11*b12 a12*b12 a21*b12 a22*b12; a11*b21 a12*b21 a21*b21 a22*b21; a11*b22 a12*b22 a21*b22 a22*b22] 用MATLAB实现 方法1: A [a11 a12; a21 a22]; B [b11 b12; b21 b22]…...
Redis ⽀持哪⼏种数据类型?适⽤场景,底层结构
目录 Redis 数据类型 一、String(字符串) 二、Hash(哈希) 三、List(列表) 四、Set(集合) 五、ZSet(sorted set:有序集合) 六、BitMap 七、HyperLogLog 八、GEO …...
树莓派2 安装raspberry os 并修改成固定ip
安装 安装raspberry os 没啥说的,到树莓派官网,下载制作启动映像盘的软件: https://www.raspberrypi.com/software/ 下载后,直接安装该软件,然后运行,选择好开发板的型号和操作系统型号,按照…...
11月第3周AI资讯
阅读时间:3-4min 更新时间:2024.9.9-2024.9.13 目录 DIAMOND:扩散模型在世界构建中的应用 阿里云推出Qwen2.5-Turbo:高效长文本处理,性价比卓越 微软:AI已实现几乎无限的记忆 Comfyui_Object_Migration一致性换衣模型 DeepSeek发布R1-Lite-Preview:推理AI竞争愈发…...
一次封装,解放双手:Requests如何实现0入侵请求与响应的智能加解密
引言 之前写了 Requests 自动重试的文章,突然想到,之前还用到过 Requests 自动加解密请求的逻辑,分享一下。之前在做逆向的时候,发现一般医院的小程序请求会这么玩,请求数据可能加密也可能不加密,但是返回…...
Notepad++--在开头快速添加行号
原文网址:Notepad--在开头快速添加行号_IT利刃出鞘的博客-CSDN博客 简介 本文介绍Notepad怎样在开头快速添加行号。 需求 原文件 想要的效果 方法 1.添加点号 Alt鼠标左键,从首行选中首列下拉,选中需要添加序号的所有行的首列ÿ…...
Python和MATLAB示例临床因素分析
🌵Python片段 为了演示临床因素的分析,让我们模拟一个数据集并执行一些基本的统计和机器学习分析。我们将重点关注以下步骤: 模拟数据集:创建具有年龄、性别、BMI、吸烟状况和疾病结果等特征的临床数据。描述性统计:…...
嵌入式硬件实战基础篇(二)-稳定输出3.3V的太阳能电池-无限充放电
引言:本内容主要用作于学习巩固嵌入式硬件内容知识,用于想提升下述能力,针对学习稳压芯片和电容以及电池之间的运用,对于硬件PCB以及原理图的练习和前面硬件篇的实际运用;太阳能是一种清洁、可再生的能源,广…...
【数据结构】树——链式存储二叉树的基础
写在前面 书接上文:【数据结构】树——顺序存储二叉树 本篇笔记主要讲解链式存储二叉树的主要思想、如何访问每个结点、结点之间的关联、如何递归查找每个结点,为后续更高级的树形结构打下基础。不了解树的小伙伴可以查看上文 文章目录 写在前面 一、链…...
STM32-- keil常见报错与解决办法
调试问题 1. keil在线调试需要点击好几次运行才可以运行,要是直接下载程序直接就不运行。 解决:target里面的use microlib要勾选,因为使用了printf。 keil在线调试STM32,点三次运行才能跑到main的问题解决。 keil在线调试STM32…...
【大数据学习 | Spark-Core】RDD的概念与Spark任务的执行流程
1. RDD的设计背景 在实际应用中,存在许多迭代式计算,这些应用场景的共同之处是,不同计算阶段之间会重用中间结果,即一个阶段的输出结果会作为下一个阶段的输入。但是,目前的MapReduce框架都是把中间结果写入到HDFS中&…...
一文读懂埋阻埋容工艺
PCB 埋阻埋容工艺是一种在 PCB 板内部埋入电阻和电容的工艺。通常情况下, PCB 上电阻和电容都是通过贴片技术直接焊接在板面上的,而埋阻埋容工艺则将电 阻和电容嵌入到 PCB 板的内部层中,这种印制电路板,其自下而上依次包括第一介电 层,隐埋电…...
mysql 数据表导出为 markdown(附 go 语言 gorm 的实际使用)
前言 通常业务系统开发中,数据库的设计与维护是至关重要的环节。而数据库的文档化则是确保团队成员之间有效沟通、快速理解系统架构的基础。 但目前数据文档都是手动写的,耗时费力,由于当前项目使用的是 mysql 作为存储引擎,找找…...
本地云存储 MinIO 中修改用户密码
本地云存储 MinIO 中修改用户密码 MinIO 中修改用户密码前提条件步骤 1:安装 MinIO Client对于 Linux/macOS:对于 Windows: 步骤 2:配置 MinIO Client步骤 3:查看现有用户步骤 4:修改用户密码步骤 5&#x…...
go项目中比较好的实践方案
工作两年来,我并未遇到太大的挑战,也没有特别值得夸耀的项目。尽管如此,在日常的杂项工作中,我积累了不少心得,许多实践方法也在思考中逐渐得到优化。因此,我在这里记录下这些心得。 转发与封装 这个需求…...
回溯法基础入门解析
回溯法 前 言 回溯法也可以叫做回溯搜索法,它是一种搜索的方式。回溯是递归的副产品,只要有递归就会有回溯。回溯法,一般可以解决如下几种问题: 组合问题:N个数里面按一定规则找出k个数的集合切割问题:一…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
