当前位置: 首页 > news >正文

丹摩征文活动|基于丹摩算力的可图(Kolors)的部署与使用

Kolors是一个以生成图像为目标的人工智能系统,可能采用了类似于OpenAI的DALL·E、MidJourney等文本生成图像的技术。通过自然语言处理(NLP)和计算机视觉(CV)相结合,Kolors能够根据用户提供的文本描述生成符合描述的图像。


一、Kolors 简介

Kolors 是快手 Kolors 团队开发的基于潜在扩散的大规模文本到图像生成模型。 Kolors 经过数十亿个文本图像对的训练,在视觉质量、复杂语义准确性以及中英文字符的文本渲染方面比开源和专有模型表现出显着优势。此外,Kolors 支持中英文输入,在理解和生成中文内容方面表现出强大的性能。基于丹摩算力和Kolors技术的文生图系统,可能利用了强大的计算能力和先进的深度学习框架,能够在极短时间内从复杂的文本描述生成高质量的图像,广泛应用于艺术创作、广告设计、教育等领域。

前提条件

要成功部署和使用 Kolors 模型,需满足以下环境要求:

Python:3.8 或更新版本
PyTorch:1.13.1 或更新版本
Transformers:4.26.1 或更新版本
CUDA:建议使用 11.7 或更新版本,支持 GPU 加速
硬件环境:建议使用包含 8 卡 NVIDIA RTX 4090 的计算节点

二、Kolors 模型的安装与部署

1.创建实例

登录丹摩官网,创建新实例
在这里插入图片描述
由于 CogVideoX 在 FP-16 精度下的推理至少需 18GB 显存,微调则需要 40GB 显存,我们这里需要选择大于 40GB 显存的实例。
在这里插入图片描述
硬盘选择默认的 100GB 系统盘和 50GB 数据盘。
镜像选择 PyTorch2.3.0、Ubuntu-22.04,CUDA12.1 镜像。
在这里插入图片描述
创建密钥对
在这里插入图片描述
点击创建,进行实例
在这里插入图片描述
点击操作里的JupyterLab,进入JupyterLab的页面。平台已预置了调试好的代码库,开箱即用。
在这里插入图片描述
点击Terminal,进入终端页面。

安装 Anaconda

首先安装 Anaconda,方便管理 Python 环境和依赖项。

# 下载 Anaconda 安装脚本
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh# 安装 Anaconda
bash Miniconda3-latest-Linux-x86_64.sh# 将 Anaconda 目录加入环境变量
vim ~/.bashrc
export PATH=$PATH:/root/miniconda3/condabin# 重新加载环境变量
source ~/.bashrc

在这里插入图片描述

安装成功
在这里插入图片描述

3. Kolors 库下载

首先尝试更新系统的软件源列表:

sudo apt-get update

再安装 git-lfs:

# 安装 Git Large File Storage (LFS)
apt-get install git-lfs

从 GitHub 下载 Kolors 模型库。
在这里插入图片描述

# 克隆 Kolors 库
git clone https://gitee.com/ai-aigc/Kolors
cd Kolors

在这里插入图片描述

4. 创建虚拟环境并安装依赖项

使用 Anaconda 创建 Python 虚拟环境并安装 Kolors 模型所需的依赖库。

# 创建名为 "kolors" 的 Python 虚拟环境
conda create --name kolors python=3.8# 初始化并激活虚拟环境
conda init bash
source ~/.bashrc
conda activate kolors# 安装依赖项
pip install -r requirements.txt# 安装 Kolors 模型
python3 setup.py install# 下载模型权重文件
git lfs clone https://huggingface.co/Kwai-Kolors/Kolors weights/Kolors

在这里插入图片描述

三、生成图片

成部署后,您可以使用 Kolors 模型生成图像。以下是一个示例命令:

python3 scripts/sample.py "一个在星空下奔跑的女孩"

行该命令后,生成的图片将保存在 scripts/outputs/sample_test.jpg 路径下。
在这里插入图片描述

相关文章:

丹摩征文活动|基于丹摩算力的可图(Kolors)的部署与使用

Kolors是一个以生成图像为目标的人工智能系统,可能采用了类似于OpenAI的DALLE、MidJourney等文本生成图像的技术。通过自然语言处理(NLP)和计算机视觉(CV)相结合,Kolors能够根据用户提供的文本描述生成符合…...

【Vue】 npm install amap-js-api-loader指南

前言 项目中的地图模块突然打不开了 正文 版本太低了,而且Vue项目就应该正经走项目流程啊喂! npm i amap/amap-jsapi-loader --save 官方说这样执行完,就这结束啦!它结束了,我还没有,不然不可能记录这篇文…...

MacOS下的Opencv3.4.16的编译

前言 MacOS下编译opencv还是有点麻烦的。 1、Opencv3.4.16的下载 注意,我们使用的是Mac,所以ios pack并不能使用。 如何嫌官网上下载比较慢的话,可以考虑在csdn网站上下载,应该也是可以找到的。 2、cmake的下载 官网的链接&…...

Android中的依赖注入(DI)框架Hilt

Hilt 是 Android 提供的一种依赖注入(DI)框架,它基于 Dagger,目的是简化依赖注入的使用,提供更易用的接口和与 Android 生命周期组件的紧密集成。下面是 Hilt 的详细介绍。 为什么选择 Hilt? 依赖注入的优势&#xf…...

5.STM32之通信接口《精讲》之USART通信---实验串口接收程序

根据上节,我们一已经完成了串口发送程序的代码,并且深入的解析探索了串口的原理,接下来,Whappy小编将带领大家进入串口接收程序的探索与实验,并将结合上一节串口发送一起来完成串口的发送和接收实验。 上来两张图 上图…...

【Redis_Day6】Hash类型

【Redis_Day6】Hash类型 Hash类型操作hash的命令hset:设置hash中指定的字段(field)的值(value)hsetnx:想hash中添加字段并设置值hget:获取hash中指定字段的值hexists:判断hash中是否…...

[开源] SafeLine 好用的Web 应用防火墙(WAF)

SafeLine,中文名 “雷池”,是一款简单好用, 效果突出的 Web 应用防火墙(WAF),可以保护 Web 服务不受黑客攻击 一、简介 雷池通过过滤和监控 Web 应用与互联网之间的 HTTP 流量来保护 Web 服务。可以保护 Web 服务免受 SQL 注入、XSS、 代码注…...

40分钟学 Go 语言高并发:Select多路复用

Select多路复用 学习目标 知识点掌握程度应用场景select实现原理深入理解底层机制channel通信和多路选择超时处理掌握超时控制方法避免阻塞和资源浪费优先级控制理解优先级实现处理多个channel的顺序性能考虑了解性能优化点高并发场景优化 1. Select实现原理 让我们通过一个…...

candence: 如何快速设置SUBCLASS 的颜色

如何快速设置SUBCLASS 的颜色 一、一般操作 正常情况下修改SUBCLASS,需要如下步骤进行设置: 二、快速操作 右键,选择一个颜色即可...

FinalShell进行前端项目部署及nginx配置

首先需要准备服务器(阿里云、腾讯云都可)与域名; 示例为阿里云服务器; 1.进行FinalShell下载 下载官网 https://www.hostbuf.com/ 2.下载完毕后 配置FinalShell ssh ​ 名称自定义即可! 2-1 提示连接成功 ​ 3.首先检查nginx是否下载 …...

神经网络(系统性学习一):入门篇——简介、发展历程、应用领域、基本概念、超参数调优、网络类型分类

相关文章: 神经网络中常用的激活函数 神经网络简介 神经网络(Neural Networks)是受生物神经系统启发而设计的数学模型,用于模拟人类大脑处理信息的方式。它由大量的节点(或称为“神经元”)组成&#xff0…...

用nextjs开发时遇到的问题

这几天已经基本把node后端的接口全部写完了,在前端开发时考虑时博客视频类型,考虑了ssr,于是选用了nextJs,用的是nextUi,tailwincss,目前碰到两个比较难受的事情。 1.nextUI个别组件无法在服务器段渲染 目前简单的解决方法&…...

微前端基础知识入门篇(二)

概述 在上一篇介绍了一些微前端的基础知识,详见微前端基础知识入门篇(一)。本文主要介绍qiankun微前端框架的实战入门内容。 qiankun微前端实践 通过Vite脚手架分别创建三个程序,主应用A为:vite+vue3+ts,两个微应用分别为B:vite+vue3+ts;C:vite+React+ts。因为qiankun的…...

自然语言处理:第六十五章 MinerU 开源PDF文档解析方案

本人项目地址大全:Victor94-king/NLP__ManVictor: CSDN of ManVictor 原文地址:MinerU:精准解析PDF文档的开源解决方案 论文链接:MinerU: An Open-Source Solution for Precise Document Content Extraction git地址&#xff1…...

Arcpy 多线程批量重采样脚本

Arcpy 多线程批量重采样脚本 import arcpy import os import multiprocessingdef resample_tifs(input_folder, output_folder, cell_size0.05, resampling_type"BILINEAR"):"""将指定文件夹下的所有 TIFF 文件重采样到指定分辨率,并输出…...

python 画图例子

目录 多组折线图点坐标的折线图 多组折线图 数据: 第1行为x轴标签第2/3/…行等为数据,其中第一列为标签,后面为y值 图片: 代码: import matplotlib.pyplot as plt# 原始数据字符串 # 第1行为x轴标签 # 第2/3/...行等为数据,其中第一列为标签,后面…...

Win11 22H2/23H2系统11月可选更新KB5046732发布!

系统之家11月22日报道,微软针对Win11 22H2/23H2版本推送了2024年11月最新可选更新补丁KB5046732,更新后,系统版本号升至22621.4541和22631.4541。本次更新后系统托盘能够显示缩短的日期和时间,文件资源管理器窗口很小时搜索框被切…...

【STM32】MPU6050初始化常用寄存器说明及示例代码

一、MPU6050常用配置寄存器 1、电源管理寄存器1( PWR_MGMT_1 ) 此寄存器允许用户配置电源模式和时钟源。 DEVICE_RESET :用于控制复位的比特位。设置为1时复位 MPU6050,内部寄存器恢复为默认值,复位结束…...

深度学习中的mAP

在深度学习中,mAP是指平均精度均值(mean Average Precision),它是深度学习中评价模型好坏的一种指标(metric),特别是在目标检测中。 精确率和召回率的概念: (1).精确率(Precision):预测阳性结果中实际正确的比例(TP / …...

Redis设计与实现 学习笔记 第二十章 Lua脚本

Redis从2.6版本引入对Lua脚本的支持,通过在服务器中嵌入Lua环境,Redis客户端可以使用Lua脚本,直接在服务器端原子地执行多个Redis命令。 其中EVAL命令可以直接对输入的脚本进行求值: 而使用EVALSHA命令则可以根据脚本的SHA1校验…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

省略号和可变参数模板

本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...

Python网页自动化Selenium中文文档

1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API&#xff0c;让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API&#xff0c;你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...

消防一体化安全管控平台:构建消防“一张图”和APP统一管理

在城市的某个角落&#xff0c;一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延&#xff0c;滚滚浓烟弥漫开来&#xff0c;周围群众的生命财产安全受到严重威胁。就在这千钧一发之际&#xff0c;消防救援队伍迅速行动&#xff0c;而豪越科技消防一体化安全管控平台构建的消防“…...

Java并发编程实战 Day 11:并发设计模式

【Java并发编程实战 Day 11】并发设计模式 开篇 这是"Java并发编程实战"系列的第11天&#xff0c;今天我们聚焦于并发设计模式。并发设计模式是解决多线程环境下常见问题的经典解决方案&#xff0c;它们不仅提供了优雅的设计思路&#xff0c;还能显著提升系统的性能…...