当前位置: 首页 > news >正文

算法笔记:并查集

一、什么是并查集

并查集的逻辑结构是一个包含N个元素的集合,如图:

我们将各个元素划分为若干个互不相交的子集,如图:

二、并查集的基本操作

(一)初始化

初始化可以先将每个子集指向自己

 //初始化int [] un=new int[10];for (int i = 0; i < un.length; i++) { //先使得每个子集指向子集un[i]=i;}
(二)Find操作

返回指定索引的根

//并查集查询public int find(int x){if (un[x]==x){  //如果当前并查集指向自己 那么直接返回当前值即可return x;}else { //如果不指向自己 则代表有可能有指向链 那么就递归寻找  直到找到最终的根节点return find(un[x]);}}

(三)Union操作
●合并操作即将一个根指向另一个指定节点
 

//合并 也就是使得i指向jpublic void merge(int i,int j){un[find(i)]=find(j);  // un[find(i)] 是指 如果i索引 有指向其他节点的话 那么肯定要遍历到最终指向的父节点 然后将父节点与指定索引值合并 没有指向的话那么就是直接使得当前位置i指向j}
(四)Union操作(路径压缩)
 //合并(压缩路径)public int union(int x){if (un[x]==x){ //代表此时已经是跟节点return x;}else {un[x]=union(un[x]); //使得每一个节点都指向该父节点 比如1—>2—>3   3是最终根节点 那么这样写的最终效果就是  1->3  2—>3  3->3return un[x]; //返回父节点}}

相关文章:

算法笔记:并查集

一、什么是并查集 并查集的逻辑结构是一个包含N个元素的集合&#xff0c;如图&#xff1a; 我们将各个元素划分为若干个互不相交的子集&#xff0c;如图&#xff1a; 二、并查集的基本操作 &#xff08;一&#xff09;初始化 初始化可以先将每个子集指向自己 //初始化int []…...

密码系统设计实验3-2

文章目录 《密码系统设计》实验实验项目实验三 密码模块实现4-6 学时实践要求&#xff08;30 分&#xff09; 《密码系统设计》实验 实验项目 实验序号实验名称实验学时数实验目的实验内容实验类型学生学习预期成果实验三密码模块实现6基于商用密码标准的密码模块的实现实现简…...

Spring Boot 与 Spring Cloud Alibaba 版本兼容对照

版本选择要点 Spring Boot 3.x 与 Spring Cloud Alibaba 2022.0.x Spring Boot 3.x 基于 Jakarta EE&#xff0c;javax.* 更换为 jakarta.*。 需要使用 Spring Cloud 2022.0.x 和 Spring Cloud Alibaba 2022.0.x。 Alibaba 2022.0.x 对 Spring Boot 3.x 的支持在其发行说明中…...

SVD 奇异值分解

SVD 是一种矩阵分解和降维的算法&#xff0c;通过分解矩阵找到奇异值&#xff0c;奇异值越大代表特征越重要。公式如下 A U Σ V T A U \Sigma V^T AUΣVT U : 左矩阵 ( m \times m ) Σ \Sigma Σ: 对角奇异值矩阵V&#xff1a;右矩阵( n \times n ) Sklearn 实现 S…...

C++设计模式-享元模式

动机(Motivation) 在软件系统采用纯粹对象方案的问题在于大量细粒度的对象会很快充斥在系统中&#xff0c;从而带来很高的运行时代价——主要指内存需求方面的代价。如何在避免大量细粒度对象问题的同时&#xff0c;让外部客户程序仍然能够透明地使用面向对象的方式来进行操作…...

AI加持,华为全屋智能品牌升级为“鸿蒙智家”

1.传统智能家居的困境&#xff1a;从便利到繁琐 近年来&#xff0c;智能家居因其便捷性和科技感受到消费者的青睐。然而&#xff0c;随着用户需求的多样化&#xff0c;传统智能家居的弊端逐渐显现&#xff1a; 设备连接复杂&#xff0c;品牌间兼容性不足&#xff0c;用户不得不…...

洛谷刷题之p1631

序列合并 题目入口 题目描述 有两个长度为 N N N 的单调不降序列 A , B A,B A,B&#xff0c;在 A , B A,B A,B 中各取一个数相加可以得到 N 2 N^2 N2 个和&#xff0c;求这 N 2 N^2 N2 个和中最小的 N N N 个。 输入格式 第一行一个正整数 N N N&#xff1b; 第二…...

uniapp前端开发,基于vue3,element plus组件库,以及axios通讯

简介 UniApp 是一个基于 Vue.js 的跨平台开发框架&#xff0c;旨在通过一次开发、编译后运行在多个平台上&#xff0c;如 iOS、Android、H5、以及小程序&#xff08;微信小程序、支付宝小程序、百度小程序等&#xff09;等。UniApp 为开发者提供了统一的开发体验&#xff0c;使…...

在Unity中实现物体动画的完整流程

在Unity中&#xff0c;动画是游戏开发中不可或缺的一部分。无论是2D还是3D游戏&#xff0c;动画都能为游戏增添生动的视觉效果。本文将详细介绍如何在Unity中为物体添加动画&#xff0c;包括资源的准备、播放组件的添加、动画控制器的创建以及动画片段的制作与调度。 1. 准备动…...

【云计算网络安全】解析 Amazon 安全服务:构建纵深防御设计最佳实践

文章目录 一、前言二、什么是“纵深安全防御”&#xff1f;三、为什么有必要采用纵深安全防御策略&#xff1f;四、以亚马逊云科技为案例了解纵深安全防御策略设计4.1 原始设计缺少安全策略4.2 外界围栏构建安全边界4.3 访问层安全设计4.4 实例层安全设计4.5 数据层安全设计4.6…...

【Andriod ADB基本命令总结】

笔者工作当中遇到安卓机器的数据访问和上传,特来简单总结一下常用命令。 1、ADB命令简介与安装 简介: ADB (Android Debug Bridge) 是一个强大的命令行工具,用于与 Android 设备进行交互,常用于开发、调试、测试以及设备管理等操作。它是 Android 开发工具包(SDK)的一部…...

ChatGPT如何辅助academic writing?

今天想和大家分享一篇来自《Nature》杂志的文章《Three ways ChatGPT helps me in my academic writing》&#xff0c;如果您的日常涉及到学术论文的写作&#xff08;writing&#xff09;、编辑&#xff08;editing&#xff09;或者审稿&#xff08; peer review&#xff09;&a…...

Day 27 贪心算法 part01

贪心算法其实就是没有什么规律可言,所以大家了解贪心算法 就了解它没有规律的本质就够了。 不用花心思去研究其规律, 没有思路就立刻看题解。 基本贪心的题目 有两个极端,要不就是特简单,要不就是死活想不出来。 学完贪心之后再去看动态规划,就会了解贪心和动规的区别。…...

使用Python实现目标追踪算法

引言 目标追踪是计算机视觉领域的一个重要任务&#xff0c;广泛应用于视频监控、自动驾驶、机器人导航、运动分析等多个领域。目标追踪的目标是在连续的视频帧中定位和跟踪感兴趣的物体。本文将详细介绍如何使用Python和OpenCV实现一个基本的目标追踪算法&#xff0c;并通过一…...

某科技研发公司培训开发体系设计项目成功案例纪实

某科技研发公司培训开发体系设计项目成功案例纪实 ——建立分层分类的培训体系&#xff0c;加强培训跟踪考核&#xff0c;促进培训成果实现 【客户行业】科技研发行业 【问题类型】培训开发体系 【客户背景】 某智能科技研发公司是一家专注于智能科技、计算机软件技术开发与…...

如何通过高效的缓存策略无缝加速湖仓查询

引言 本文将探讨如何利用开源项目 StarRocks 的缓存策略来加速湖仓查询&#xff0c;为企业提供更快速、更灵活的数据分析能力。作为 StarRocks 社区的主要贡献者和商业化公司&#xff0c;镜舟科技深度参与 StarRocks 项目开发&#xff0c;也为企业着手构建湖仓架构提供更多参考…...

Linux V4L2框架介绍

linux V4L2框架介绍 V4L2框架介绍 V4L2&#xff0c;全称Video for Linux 2&#xff0c;是Linux操作系统下用于视频数据采集设备的驱动框。它提供了一种标准化的方式使用户空间程序能够与视频设备进行通信和交互。通过V4L2接口&#xff0c;用户可以方便地实现视频图像数据的采…...

【前端】JavaScript 中 arguments、类数组与数组的深入解析

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: 前端 文章目录 &#x1f4af;前言&#x1f4af;什么是 arguments 对象2.1 arguments 的定义2.2 arguments 的特性2.3 使用场景 &#x1f4af;深入了解 arguments 的结构3.1 arguments 的内部结构arguments 的关键属性…...

Android 布局菜单或按钮图标或Menu/Item设置可见和不可见

设置可见和不可见 即 设置 显示和隐藏&#xff1b;是双向设置&#xff1b;什么情况显示&#xff0c;什么情况隐藏分判断的条件 它不同于删除和屏蔽&#xff0c;删除和屏蔽&#xff0c;覆盖是单向的&#xff0c;不可逆转的。它间接等于单向的隐藏&#xff01;&#xff01;&…...

|| 与 ??的区别

?? : 空值合并运算符&#xff0c; 用于在左侧操作数为 null 或 undefined 时返回右侧操作数 let name null // null 或者 undefinedlet defaultName defaultNamelet displayName name ?? defaultNameconsole.log(displayName) // defaultName || : 逻辑或&#xff0c;…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具

作者&#xff1a;来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗&#xff1f;了解下一期 Elasticsearch Engineer 培训的时间吧&#xff01; Elasticsearch 拥有众多新功能&#xff0c;助你为自己…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...