当前位置: 首页 > news >正文

证明直纹面是可展曲面沿着直母线,曲面的切平面不变

目录

  • 证明直纹面是可展曲面的当且仅当沿着直母线,曲面的切平面不变

证明直纹面是可展曲面的当且仅当沿着直母线,曲面的切平面不变

直纹面是可展曲面当且仅当沿着直母线,曲面的切平面不变.

证明:设直纹面 S S S的参数式为 r ( u , v ) = a ( u ) + v b ( u ) . (u,v)=\mathbf{a}(u)+v\mathbf{b}(u). (u,v)=a(u)+vb(u).

沿着直母线,曲面的切平面不变

⇔ \Leftrightarrow

对于任意 u u u, 及 v 1 ≠ v 2 , n ( u , v 1 ) / / n ( u , v 2 ) v_1\neq v_2, \textbf{ n}( u, v_1) / / \mathbf{n} ( u, v_2) v1=v2, n(u,v1)//n(u,v2)

⇔ \Leftrightarrow r u ( u , v 1 ) ∧ r v ( u , v 1 ) / / r u ( u , v 2 ) ∧ r v ( u , v 2 ) \mathbf{r}_u(u,v_1)\wedge\mathbf{r}_v(u,v_1)//\mathbf{r}_u(u,v_2)\wedge\mathbf{r}_v(u,v_2) ru(u,v1)rv(u,v1)//ru(u,v2)rv(u,v2)

⇔ \Leftrightarrow

0 = ( r u ( u , v 1 ) ∧ r v ( u , v 1 ) ) ∧ ( r u ( u , v 2 ) ∧ r v ( u , v 2 ) ) = ( ( a ′ + v 1 b ′ ) ∧ b ) ∧ ( ( a ′ + v 2 b ′ ) ∧ b ) = ⟨ a ′ + v 1 b ′ , ( a ′ + v 2 b ′ ) ∧ b ⟩ b − ⟨ b , ( a ′ + v 2 b ′ ) ∧ b ⟩ ( a ′ + v 1 b ′ ) = ⟨ a ′ , v 2 b ′ ∧ b ⟩ + ⟨ v 1 b ′ , a ′ ∧ b ⟩ = ( v 1 − v 2 ) ( a ′ , b , b ′ ) \begin{align*} 0&=(\mathbf{r}_u(u,v_1)\wedge\mathbf{r}_v(u,v_1))\wedge(\mathbf{r}_u(u,v_2)\wedge\mathbf{r}_v(u,v_2)) \\&=((\mathbf{a}'+v_1\mathbf{b}')\wedge\mathbf{b})\wedge((\mathbf{a}'+v_2\mathbf{b}')\wedge\mathbf{b}) \\&=\langle\mathbf{a}^{\prime}+v_{1}\mathbf{b}^{\prime},(\mathbf{a}^{\prime}+v_{2}\mathbf{b}^{\prime})\wedge\mathbf{b}\rangle\mathbf{b}-\langle\mathbf{b},(\mathbf{a}^{\prime}+v_{2}\mathbf{b}^{\prime})\wedge\mathbf{b}\rangle(\mathbf{a}^{\prime}+v_{1}\mathbf{b}^{\prime}) \\&=\langle\mathbf{a}^{\prime},v_{2}\mathbf{b}^{\prime}\wedge\mathbf{b}\rangle+\langle v_{1}\mathbf{b}^{\prime},\mathbf{a}^{\prime}\wedge\mathbf{b}\rangle=(v_{1}-v_{2})(\mathbf{a}^{\prime},\mathbf{b},\mathbf{b}^{\prime}) \end{align*} 0=(ru(u,v1)rv(u,v1))(ru(u,v2)rv(u,v2))=((a+v1b)b)((a+v2b)b)=a+v1b,(a+v2b)bbb,(a+v2b)b(a+v1b)=a,v2bb+v1b,ab=(v1v2)(a,b,b)

⇔ \Leftrightarrow

( a ′ , b , b ′ ) = 0 (\mathbf a',\mathbf b,\mathbf b')=0 (a,b,b)=0

⇔ \Leftrightarrow

曲面 S S S是可展曲面

相关文章:

证明直纹面是可展曲面沿着直母线,曲面的切平面不变

目录 证明直纹面是可展曲面的当且仅当沿着直母线,曲面的切平面不变 证明直纹面是可展曲面的当且仅当沿着直母线,曲面的切平面不变 直纹面是可展曲面当且仅当沿着直母线,曲面的切平面不变. 证明:设直纹面 S S S的参数式为 r ( u …...

Chrome控制台 网站性能优化指标一览

打开chrome-》f12/右键查看元素-》NetWrok/网络 ctrlF5 刷新网页,可以看到从输入url到页面资源请求并加载网页,用于查看资源加载,接口请求,评估网页、网站性能等,如下图: request、stransferred、resour…...

Typora创建markdwon文件的基础语法

标题的创建 使用#空格xxx 可使xxx为标题,同时第一标题为#空格标题;第二标题为##空格标题2。以此类推最多可创建六个标题。 同时按住Ctrl1可创建第一标题,同时按住Ctrl2可创建第二标题,以此类推,最多可创建六个标题。也…...

《嵌入式硬件设计》

一、引言 嵌入式系统在现代科技中占据着至关重要的地位,广泛应用于消费电子、工业控制、汽车电子、医疗设备等众多领域。嵌入式硬件设计作为嵌入式系统开发的基础,直接决定了系统的性能、可靠性和成本。本文将深入探讨嵌入式硬件设计的各个方面&#xff…...

【AIGC】大模型面试高频考点-位置编码篇

【AIGC】大模型面试高频考点-位置编码篇 (一)手撕 绝对位置编码 算法(二)手撕 可学习位置编码 算法(三)手撕 相对位置编码 算法(四)手撕 Rope 算法(旋转位置编码&#xf…...

如何使用 SQL 语句创建一个 MySQL 数据库的表,以及对应的 XML 文件和 Mapper 文件

文章目录 1、SQL 脚本语句2、XML 文件3、Mapper 文件4、启动 ServiceInit 文件5、DataService 文件6、ComplianceDBConfig 配置文件 这个方式通常是放在项目代码中,使用配置在项目的启动时创建表格,SQL 语句放到一个 XML 文件中。在Spring 项目启动时&am…...

Unity性能优化---动态网格组合(二)

在上一篇中,组合的是同一个材质球的网格,如果其中有不一样的材质球会发生什么?如下图: 将场景中的一个物体替换为不同的材质球 运行之后,就变成了相同的材质。 要实现组合不同材质的网格步骤如下: 在父物体…...

JVM学习《垃圾回收算法和垃圾回收器》

目录 1.垃圾回收算法 1.1 标记-清除算法 1.2 复制算法 1.3 标记-整理算法 1.4 分代收集算法 2.垃圾回收器 2.1 熟悉一下垃圾回收的一些名词 2.2 垃圾回收器有哪些? 2.3 Serial收集器 2.4 Parallel Scavenge收集器 2.5 ParNew收集器 2.6 CMS收集器 1.垃圾…...

GPS模块/SATES-ST91Z8LR:电路搭建;直接用电脑的USB转串口进行通讯;模组上报定位数据转换地图识别的坐标手动查询地图位置

从事嵌入式单片机的工作算是符合我个人兴趣爱好的,当面对一个新的芯片我即想把芯片尽快搞懂完成项目赚钱,也想着能够把自己遇到的坑和注意事项记录下来,即方便自己后面查阅也可以分享给大家,这是一种冲动,但是这个或许并不是原厂希望的,尽管这样有可能会牺牲一些时间也有哪天原…...

什么是TCP的三次握手

TCP(传输控制协议)的三次握手是一个用于在两个网络通信的计算机之间建立连接的过程。这个过程确保了双方都有能力接收和发送数据,并且初始化双方的序列号。以下是三次握手的详细步骤: 第一次握手(SYN)&…...

《Clustering Propagation for Universal Medical Image Segmentation》CVPR2024

摘要 这篇论文介绍了S2VNet,这是一个用于医学图像分割的通用框架,它通过切片到体积的传播(Slice-to-Volume propagation)来统一自动(AMIS)和交互式(IMIS)医学图像分割任务。S2VNet利…...

Linux ifconfig ip 命令详解

简介 ifconfig 和 ip 命令用于配置和显示 Linux 上的网络接口。虽然 ifconfig 是传统工具,但现在已被弃用并被提供更多功能的 ip 命令取代。 ifconfig 安装 sudo apt install net-toolssudo yum install net-tools查看所有活动的网络接口 ifconfig启动/激活网络…...

Vue3 对于echarts使用 v-show,导致显示不全,宽度仅100px,无法重新渲染的问题

参考链接:解决Echarts图表使用v-show,显示不全,宽度仅100px的问题_echarts v-show图表不全-CSDN博客 Vue3 echarts v-show无法重新渲染的问题_v-show echarts不渲染-CSDN博客 原因不多赘述了,大概就是v-show 本身是结构已经存在,当数据发生…...

C++实现俄罗斯方块

俄罗斯方块 还记得俄罗斯方块吗?相信这是小时候我们每个人都喜欢玩的一个小游戏。顾名思义,俄罗斯方块自然是俄罗斯人发明的。这人叫阿列克谢帕基特诺夫。他设置这个游戏的规则是:由小方块组成的不同形状的板块陆续从屏幕上方落下来&#xf…...

鸿蒙分享:添加模块,修改app名称图标

新建公共模块common 在entry的oh-package.json5添加dependencies,引入common模块 "dependencies": {"common": "file:../common" } 修改app名称: common--src--resources--string.json 新增: {"name&q…...

扫描IP段内的使用的IP

扫描IP段内的使用的IP 方法一:命令行 命令行进入 for /L %i IN (1,1,254) DO ping -w 1 -n 1 192.168.3.%iarp -a方法二:python from scapy.all import ARP, Ether, srp import keyboarddef scan_network(ip_range):# 创建一个ARP请求包arp ARP(pds…...

【专题】虚拟存储器

前文提到的存储器管理方式有一个共同的特点,即它们都要求将一个作业全部装入内存后方能运行。 但有两种特殊情况: 有的作业很大,其所要求的内存空间超过了内存总容量,作业不能全部被装入内存,致使该作业无法运行&#…...

Python之爬虫入门--示例(2)

一、Requests库安装 可以使用命令提示符指令直接安装requests库使用 pip install requests 二、爬取JSON数据 (1)、点击网络 (2)、刷新网页 (3)、这里有一些数据类型,选择全部 &#xff08…...

5G CPE终端功能及性能评测(四)

5G CPE 功能性能评测 本文选取了几款在工业应用领域应用较多的5G CPE,对其功能和性能进行了对比评测。功能方面主要对比了网络接口数量,VPN功能 支持情况。以下测试为空口测试,测试结果受环境影响较大,性能仅供参考。总体看,高通X55芯片下行最优,速率稳定。 功能 对比CPE…...

人工智能驱动的骗局会模仿熟悉的声音

由于人工智能技术的进步,各种现代骗局变得越来越复杂。 这些骗局现在包括人工智能驱动的网络钓鱼技术,即使用人工智能模仿家人或朋友的声音和视频。 诈骗者使用来自社交媒体的内容来制作深度伪造内容,要求提供金钱或个人信息。个人应该通过…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

【单片机期末】单片机系统设计

主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM&#xff09…...

网络编程(UDP编程)

思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

华为OD机考-机房布局

import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...

Axure 下拉框联动

实现选省、选完省之后选对应省份下的市区...

字符串哈希+KMP

P10468 兔子与兔子 #include<bits/stdc.h> using namespace std; typedef unsigned long long ull; const int N 1000010; ull a[N], pw[N]; int n; ull gethash(int l, int r){return a[r] - a[l - 1] * pw[r - l 1]; } signed main(){ios::sync_with_stdio(false), …...

【版本控制】GitHub Desktop 入门教程与开源协作全流程解析

目录 0 引言1 GitHub Desktop 入门教程1.1 安装与基础配置1.2 核心功能使用指南仓库管理日常开发流程分支管理 2 GitHub 开源协作流程详解2.1 Fork & Pull Request 模型2.2 完整协作流程步骤步骤 1: Fork&#xff08;创建个人副本&#xff09;步骤 2: Clone&#xff08;克隆…...