当前位置: 首页 > news >正文

证明直纹面是可展曲面沿着直母线,曲面的切平面不变

目录

  • 证明直纹面是可展曲面的当且仅当沿着直母线,曲面的切平面不变

证明直纹面是可展曲面的当且仅当沿着直母线,曲面的切平面不变

直纹面是可展曲面当且仅当沿着直母线,曲面的切平面不变.

证明:设直纹面 S S S的参数式为 r ( u , v ) = a ( u ) + v b ( u ) . (u,v)=\mathbf{a}(u)+v\mathbf{b}(u). (u,v)=a(u)+vb(u).

沿着直母线,曲面的切平面不变

⇔ \Leftrightarrow

对于任意 u u u, 及 v 1 ≠ v 2 , n ( u , v 1 ) / / n ( u , v 2 ) v_1\neq v_2, \textbf{ n}( u, v_1) / / \mathbf{n} ( u, v_2) v1=v2, n(u,v1)//n(u,v2)

⇔ \Leftrightarrow r u ( u , v 1 ) ∧ r v ( u , v 1 ) / / r u ( u , v 2 ) ∧ r v ( u , v 2 ) \mathbf{r}_u(u,v_1)\wedge\mathbf{r}_v(u,v_1)//\mathbf{r}_u(u,v_2)\wedge\mathbf{r}_v(u,v_2) ru(u,v1)rv(u,v1)//ru(u,v2)rv(u,v2)

⇔ \Leftrightarrow

0 = ( r u ( u , v 1 ) ∧ r v ( u , v 1 ) ) ∧ ( r u ( u , v 2 ) ∧ r v ( u , v 2 ) ) = ( ( a ′ + v 1 b ′ ) ∧ b ) ∧ ( ( a ′ + v 2 b ′ ) ∧ b ) = ⟨ a ′ + v 1 b ′ , ( a ′ + v 2 b ′ ) ∧ b ⟩ b − ⟨ b , ( a ′ + v 2 b ′ ) ∧ b ⟩ ( a ′ + v 1 b ′ ) = ⟨ a ′ , v 2 b ′ ∧ b ⟩ + ⟨ v 1 b ′ , a ′ ∧ b ⟩ = ( v 1 − v 2 ) ( a ′ , b , b ′ ) \begin{align*} 0&=(\mathbf{r}_u(u,v_1)\wedge\mathbf{r}_v(u,v_1))\wedge(\mathbf{r}_u(u,v_2)\wedge\mathbf{r}_v(u,v_2)) \\&=((\mathbf{a}'+v_1\mathbf{b}')\wedge\mathbf{b})\wedge((\mathbf{a}'+v_2\mathbf{b}')\wedge\mathbf{b}) \\&=\langle\mathbf{a}^{\prime}+v_{1}\mathbf{b}^{\prime},(\mathbf{a}^{\prime}+v_{2}\mathbf{b}^{\prime})\wedge\mathbf{b}\rangle\mathbf{b}-\langle\mathbf{b},(\mathbf{a}^{\prime}+v_{2}\mathbf{b}^{\prime})\wedge\mathbf{b}\rangle(\mathbf{a}^{\prime}+v_{1}\mathbf{b}^{\prime}) \\&=\langle\mathbf{a}^{\prime},v_{2}\mathbf{b}^{\prime}\wedge\mathbf{b}\rangle+\langle v_{1}\mathbf{b}^{\prime},\mathbf{a}^{\prime}\wedge\mathbf{b}\rangle=(v_{1}-v_{2})(\mathbf{a}^{\prime},\mathbf{b},\mathbf{b}^{\prime}) \end{align*} 0=(ru(u,v1)rv(u,v1))(ru(u,v2)rv(u,v2))=((a+v1b)b)((a+v2b)b)=a+v1b,(a+v2b)bbb,(a+v2b)b(a+v1b)=a,v2bb+v1b,ab=(v1v2)(a,b,b)

⇔ \Leftrightarrow

( a ′ , b , b ′ ) = 0 (\mathbf a',\mathbf b,\mathbf b')=0 (a,b,b)=0

⇔ \Leftrightarrow

曲面 S S S是可展曲面

相关文章:

证明直纹面是可展曲面沿着直母线,曲面的切平面不变

目录 证明直纹面是可展曲面的当且仅当沿着直母线,曲面的切平面不变 证明直纹面是可展曲面的当且仅当沿着直母线,曲面的切平面不变 直纹面是可展曲面当且仅当沿着直母线,曲面的切平面不变. 证明:设直纹面 S S S的参数式为 r ( u …...

Chrome控制台 网站性能优化指标一览

打开chrome-》f12/右键查看元素-》NetWrok/网络 ctrlF5 刷新网页,可以看到从输入url到页面资源请求并加载网页,用于查看资源加载,接口请求,评估网页、网站性能等,如下图: request、stransferred、resour…...

Typora创建markdwon文件的基础语法

标题的创建 使用#空格xxx 可使xxx为标题,同时第一标题为#空格标题;第二标题为##空格标题2。以此类推最多可创建六个标题。 同时按住Ctrl1可创建第一标题,同时按住Ctrl2可创建第二标题,以此类推,最多可创建六个标题。也…...

《嵌入式硬件设计》

一、引言 嵌入式系统在现代科技中占据着至关重要的地位,广泛应用于消费电子、工业控制、汽车电子、医疗设备等众多领域。嵌入式硬件设计作为嵌入式系统开发的基础,直接决定了系统的性能、可靠性和成本。本文将深入探讨嵌入式硬件设计的各个方面&#xff…...

【AIGC】大模型面试高频考点-位置编码篇

【AIGC】大模型面试高频考点-位置编码篇 (一)手撕 绝对位置编码 算法(二)手撕 可学习位置编码 算法(三)手撕 相对位置编码 算法(四)手撕 Rope 算法(旋转位置编码&#xf…...

如何使用 SQL 语句创建一个 MySQL 数据库的表,以及对应的 XML 文件和 Mapper 文件

文章目录 1、SQL 脚本语句2、XML 文件3、Mapper 文件4、启动 ServiceInit 文件5、DataService 文件6、ComplianceDBConfig 配置文件 这个方式通常是放在项目代码中,使用配置在项目的启动时创建表格,SQL 语句放到一个 XML 文件中。在Spring 项目启动时&am…...

Unity性能优化---动态网格组合(二)

在上一篇中,组合的是同一个材质球的网格,如果其中有不一样的材质球会发生什么?如下图: 将场景中的一个物体替换为不同的材质球 运行之后,就变成了相同的材质。 要实现组合不同材质的网格步骤如下: 在父物体…...

JVM学习《垃圾回收算法和垃圾回收器》

目录 1.垃圾回收算法 1.1 标记-清除算法 1.2 复制算法 1.3 标记-整理算法 1.4 分代收集算法 2.垃圾回收器 2.1 熟悉一下垃圾回收的一些名词 2.2 垃圾回收器有哪些? 2.3 Serial收集器 2.4 Parallel Scavenge收集器 2.5 ParNew收集器 2.6 CMS收集器 1.垃圾…...

GPS模块/SATES-ST91Z8LR:电路搭建;直接用电脑的USB转串口进行通讯;模组上报定位数据转换地图识别的坐标手动查询地图位置

从事嵌入式单片机的工作算是符合我个人兴趣爱好的,当面对一个新的芯片我即想把芯片尽快搞懂完成项目赚钱,也想着能够把自己遇到的坑和注意事项记录下来,即方便自己后面查阅也可以分享给大家,这是一种冲动,但是这个或许并不是原厂希望的,尽管这样有可能会牺牲一些时间也有哪天原…...

什么是TCP的三次握手

TCP(传输控制协议)的三次握手是一个用于在两个网络通信的计算机之间建立连接的过程。这个过程确保了双方都有能力接收和发送数据,并且初始化双方的序列号。以下是三次握手的详细步骤: 第一次握手(SYN)&…...

《Clustering Propagation for Universal Medical Image Segmentation》CVPR2024

摘要 这篇论文介绍了S2VNet,这是一个用于医学图像分割的通用框架,它通过切片到体积的传播(Slice-to-Volume propagation)来统一自动(AMIS)和交互式(IMIS)医学图像分割任务。S2VNet利…...

Linux ifconfig ip 命令详解

简介 ifconfig 和 ip 命令用于配置和显示 Linux 上的网络接口。虽然 ifconfig 是传统工具,但现在已被弃用并被提供更多功能的 ip 命令取代。 ifconfig 安装 sudo apt install net-toolssudo yum install net-tools查看所有活动的网络接口 ifconfig启动/激活网络…...

Vue3 对于echarts使用 v-show,导致显示不全,宽度仅100px,无法重新渲染的问题

参考链接:解决Echarts图表使用v-show,显示不全,宽度仅100px的问题_echarts v-show图表不全-CSDN博客 Vue3 echarts v-show无法重新渲染的问题_v-show echarts不渲染-CSDN博客 原因不多赘述了,大概就是v-show 本身是结构已经存在,当数据发生…...

C++实现俄罗斯方块

俄罗斯方块 还记得俄罗斯方块吗?相信这是小时候我们每个人都喜欢玩的一个小游戏。顾名思义,俄罗斯方块自然是俄罗斯人发明的。这人叫阿列克谢帕基特诺夫。他设置这个游戏的规则是:由小方块组成的不同形状的板块陆续从屏幕上方落下来&#xf…...

鸿蒙分享:添加模块,修改app名称图标

新建公共模块common 在entry的oh-package.json5添加dependencies,引入common模块 "dependencies": {"common": "file:../common" } 修改app名称: common--src--resources--string.json 新增: {"name&q…...

扫描IP段内的使用的IP

扫描IP段内的使用的IP 方法一:命令行 命令行进入 for /L %i IN (1,1,254) DO ping -w 1 -n 1 192.168.3.%iarp -a方法二:python from scapy.all import ARP, Ether, srp import keyboarddef scan_network(ip_range):# 创建一个ARP请求包arp ARP(pds…...

【专题】虚拟存储器

前文提到的存储器管理方式有一个共同的特点,即它们都要求将一个作业全部装入内存后方能运行。 但有两种特殊情况: 有的作业很大,其所要求的内存空间超过了内存总容量,作业不能全部被装入内存,致使该作业无法运行&#…...

Python之爬虫入门--示例(2)

一、Requests库安装 可以使用命令提示符指令直接安装requests库使用 pip install requests 二、爬取JSON数据 (1)、点击网络 (2)、刷新网页 (3)、这里有一些数据类型,选择全部 &#xff08…...

5G CPE终端功能及性能评测(四)

5G CPE 功能性能评测 本文选取了几款在工业应用领域应用较多的5G CPE,对其功能和性能进行了对比评测。功能方面主要对比了网络接口数量,VPN功能 支持情况。以下测试为空口测试,测试结果受环境影响较大,性能仅供参考。总体看,高通X55芯片下行最优,速率稳定。 功能 对比CPE…...

人工智能驱动的骗局会模仿熟悉的声音

由于人工智能技术的进步,各种现代骗局变得越来越复杂。 这些骗局现在包括人工智能驱动的网络钓鱼技术,即使用人工智能模仿家人或朋友的声音和视频。 诈骗者使用来自社交媒体的内容来制作深度伪造内容,要求提供金钱或个人信息。个人应该通过…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

ios苹果系统,js 滑动屏幕、锚定无效

现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...

管理学院权限管理系统开发总结

文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...

Java编程之桥接模式

定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)

名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...

MySQL 8.0 事务全面讲解

以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...

基于鸿蒙(HarmonyOS5)的打车小程序

1. 开发环境准备 安装DevEco Studio (鸿蒙官方IDE)配置HarmonyOS SDK申请开发者账号和必要的API密钥 2. 项目结构设计 ├── entry │ ├── src │ │ ├── main │ │ │ ├── ets │ │ │ │ ├── pages │ │ │ │ │ ├── H…...

小智AI+MCP

什么是小智AI和MCP 如果还不清楚的先看往期文章 手搓小智AI聊天机器人 MCP 深度解析:AI 的USB接口 如何使用小智MCP 1.刷支持mcp的小智固件 2.下载官方MCP的示例代码 Github:https://github.com/78/mcp-calculator 安这个步骤执行 其中MCP_ENDPOI…...

手动给中文分词和 直接用神经网络RNN做有什么区别

手动分词和基于神经网络(如 RNN)的自动分词在原理、实现方式和效果上有显著差异,以下是核心对比: 1. 实现原理对比 对比维度手动分词(规则 / 词典驱动)神经网络 RNN 分词(数据驱动&#xff09…...