当前位置: 首页 > news >正文

证明直纹面是可展曲面沿着直母线,曲面的切平面不变

目录

  • 证明直纹面是可展曲面的当且仅当沿着直母线,曲面的切平面不变

证明直纹面是可展曲面的当且仅当沿着直母线,曲面的切平面不变

直纹面是可展曲面当且仅当沿着直母线,曲面的切平面不变.

证明:设直纹面 S S S的参数式为 r ( u , v ) = a ( u ) + v b ( u ) . (u,v)=\mathbf{a}(u)+v\mathbf{b}(u). (u,v)=a(u)+vb(u).

沿着直母线,曲面的切平面不变

⇔ \Leftrightarrow

对于任意 u u u, 及 v 1 ≠ v 2 , n ( u , v 1 ) / / n ( u , v 2 ) v_1\neq v_2, \textbf{ n}( u, v_1) / / \mathbf{n} ( u, v_2) v1=v2, n(u,v1)//n(u,v2)

⇔ \Leftrightarrow r u ( u , v 1 ) ∧ r v ( u , v 1 ) / / r u ( u , v 2 ) ∧ r v ( u , v 2 ) \mathbf{r}_u(u,v_1)\wedge\mathbf{r}_v(u,v_1)//\mathbf{r}_u(u,v_2)\wedge\mathbf{r}_v(u,v_2) ru(u,v1)rv(u,v1)//ru(u,v2)rv(u,v2)

⇔ \Leftrightarrow

0 = ( r u ( u , v 1 ) ∧ r v ( u , v 1 ) ) ∧ ( r u ( u , v 2 ) ∧ r v ( u , v 2 ) ) = ( ( a ′ + v 1 b ′ ) ∧ b ) ∧ ( ( a ′ + v 2 b ′ ) ∧ b ) = ⟨ a ′ + v 1 b ′ , ( a ′ + v 2 b ′ ) ∧ b ⟩ b − ⟨ b , ( a ′ + v 2 b ′ ) ∧ b ⟩ ( a ′ + v 1 b ′ ) = ⟨ a ′ , v 2 b ′ ∧ b ⟩ + ⟨ v 1 b ′ , a ′ ∧ b ⟩ = ( v 1 − v 2 ) ( a ′ , b , b ′ ) \begin{align*} 0&=(\mathbf{r}_u(u,v_1)\wedge\mathbf{r}_v(u,v_1))\wedge(\mathbf{r}_u(u,v_2)\wedge\mathbf{r}_v(u,v_2)) \\&=((\mathbf{a}'+v_1\mathbf{b}')\wedge\mathbf{b})\wedge((\mathbf{a}'+v_2\mathbf{b}')\wedge\mathbf{b}) \\&=\langle\mathbf{a}^{\prime}+v_{1}\mathbf{b}^{\prime},(\mathbf{a}^{\prime}+v_{2}\mathbf{b}^{\prime})\wedge\mathbf{b}\rangle\mathbf{b}-\langle\mathbf{b},(\mathbf{a}^{\prime}+v_{2}\mathbf{b}^{\prime})\wedge\mathbf{b}\rangle(\mathbf{a}^{\prime}+v_{1}\mathbf{b}^{\prime}) \\&=\langle\mathbf{a}^{\prime},v_{2}\mathbf{b}^{\prime}\wedge\mathbf{b}\rangle+\langle v_{1}\mathbf{b}^{\prime},\mathbf{a}^{\prime}\wedge\mathbf{b}\rangle=(v_{1}-v_{2})(\mathbf{a}^{\prime},\mathbf{b},\mathbf{b}^{\prime}) \end{align*} 0=(ru(u,v1)rv(u,v1))(ru(u,v2)rv(u,v2))=((a+v1b)b)((a+v2b)b)=a+v1b,(a+v2b)bbb,(a+v2b)b(a+v1b)=a,v2bb+v1b,ab=(v1v2)(a,b,b)

⇔ \Leftrightarrow

( a ′ , b , b ′ ) = 0 (\mathbf a',\mathbf b,\mathbf b')=0 (a,b,b)=0

⇔ \Leftrightarrow

曲面 S S S是可展曲面

相关文章:

证明直纹面是可展曲面沿着直母线,曲面的切平面不变

目录 证明直纹面是可展曲面的当且仅当沿着直母线,曲面的切平面不变 证明直纹面是可展曲面的当且仅当沿着直母线,曲面的切平面不变 直纹面是可展曲面当且仅当沿着直母线,曲面的切平面不变. 证明:设直纹面 S S S的参数式为 r ( u …...

Chrome控制台 网站性能优化指标一览

打开chrome-》f12/右键查看元素-》NetWrok/网络 ctrlF5 刷新网页,可以看到从输入url到页面资源请求并加载网页,用于查看资源加载,接口请求,评估网页、网站性能等,如下图: request、stransferred、resour…...

Typora创建markdwon文件的基础语法

标题的创建 使用#空格xxx 可使xxx为标题,同时第一标题为#空格标题;第二标题为##空格标题2。以此类推最多可创建六个标题。 同时按住Ctrl1可创建第一标题,同时按住Ctrl2可创建第二标题,以此类推,最多可创建六个标题。也…...

《嵌入式硬件设计》

一、引言 嵌入式系统在现代科技中占据着至关重要的地位,广泛应用于消费电子、工业控制、汽车电子、医疗设备等众多领域。嵌入式硬件设计作为嵌入式系统开发的基础,直接决定了系统的性能、可靠性和成本。本文将深入探讨嵌入式硬件设计的各个方面&#xff…...

【AIGC】大模型面试高频考点-位置编码篇

【AIGC】大模型面试高频考点-位置编码篇 (一)手撕 绝对位置编码 算法(二)手撕 可学习位置编码 算法(三)手撕 相对位置编码 算法(四)手撕 Rope 算法(旋转位置编码&#xf…...

如何使用 SQL 语句创建一个 MySQL 数据库的表,以及对应的 XML 文件和 Mapper 文件

文章目录 1、SQL 脚本语句2、XML 文件3、Mapper 文件4、启动 ServiceInit 文件5、DataService 文件6、ComplianceDBConfig 配置文件 这个方式通常是放在项目代码中,使用配置在项目的启动时创建表格,SQL 语句放到一个 XML 文件中。在Spring 项目启动时&am…...

Unity性能优化---动态网格组合(二)

在上一篇中,组合的是同一个材质球的网格,如果其中有不一样的材质球会发生什么?如下图: 将场景中的一个物体替换为不同的材质球 运行之后,就变成了相同的材质。 要实现组合不同材质的网格步骤如下: 在父物体…...

JVM学习《垃圾回收算法和垃圾回收器》

目录 1.垃圾回收算法 1.1 标记-清除算法 1.2 复制算法 1.3 标记-整理算法 1.4 分代收集算法 2.垃圾回收器 2.1 熟悉一下垃圾回收的一些名词 2.2 垃圾回收器有哪些? 2.3 Serial收集器 2.4 Parallel Scavenge收集器 2.5 ParNew收集器 2.6 CMS收集器 1.垃圾…...

GPS模块/SATES-ST91Z8LR:电路搭建;直接用电脑的USB转串口进行通讯;模组上报定位数据转换地图识别的坐标手动查询地图位置

从事嵌入式单片机的工作算是符合我个人兴趣爱好的,当面对一个新的芯片我即想把芯片尽快搞懂完成项目赚钱,也想着能够把自己遇到的坑和注意事项记录下来,即方便自己后面查阅也可以分享给大家,这是一种冲动,但是这个或许并不是原厂希望的,尽管这样有可能会牺牲一些时间也有哪天原…...

什么是TCP的三次握手

TCP(传输控制协议)的三次握手是一个用于在两个网络通信的计算机之间建立连接的过程。这个过程确保了双方都有能力接收和发送数据,并且初始化双方的序列号。以下是三次握手的详细步骤: 第一次握手(SYN)&…...

《Clustering Propagation for Universal Medical Image Segmentation》CVPR2024

摘要 这篇论文介绍了S2VNet,这是一个用于医学图像分割的通用框架,它通过切片到体积的传播(Slice-to-Volume propagation)来统一自动(AMIS)和交互式(IMIS)医学图像分割任务。S2VNet利…...

Linux ifconfig ip 命令详解

简介 ifconfig 和 ip 命令用于配置和显示 Linux 上的网络接口。虽然 ifconfig 是传统工具,但现在已被弃用并被提供更多功能的 ip 命令取代。 ifconfig 安装 sudo apt install net-toolssudo yum install net-tools查看所有活动的网络接口 ifconfig启动/激活网络…...

Vue3 对于echarts使用 v-show,导致显示不全,宽度仅100px,无法重新渲染的问题

参考链接:解决Echarts图表使用v-show,显示不全,宽度仅100px的问题_echarts v-show图表不全-CSDN博客 Vue3 echarts v-show无法重新渲染的问题_v-show echarts不渲染-CSDN博客 原因不多赘述了,大概就是v-show 本身是结构已经存在,当数据发生…...

C++实现俄罗斯方块

俄罗斯方块 还记得俄罗斯方块吗?相信这是小时候我们每个人都喜欢玩的一个小游戏。顾名思义,俄罗斯方块自然是俄罗斯人发明的。这人叫阿列克谢帕基特诺夫。他设置这个游戏的规则是:由小方块组成的不同形状的板块陆续从屏幕上方落下来&#xf…...

鸿蒙分享:添加模块,修改app名称图标

新建公共模块common 在entry的oh-package.json5添加dependencies,引入common模块 "dependencies": {"common": "file:../common" } 修改app名称: common--src--resources--string.json 新增: {"name&q…...

扫描IP段内的使用的IP

扫描IP段内的使用的IP 方法一:命令行 命令行进入 for /L %i IN (1,1,254) DO ping -w 1 -n 1 192.168.3.%iarp -a方法二:python from scapy.all import ARP, Ether, srp import keyboarddef scan_network(ip_range):# 创建一个ARP请求包arp ARP(pds…...

【专题】虚拟存储器

前文提到的存储器管理方式有一个共同的特点,即它们都要求将一个作业全部装入内存后方能运行。 但有两种特殊情况: 有的作业很大,其所要求的内存空间超过了内存总容量,作业不能全部被装入内存,致使该作业无法运行&#…...

Python之爬虫入门--示例(2)

一、Requests库安装 可以使用命令提示符指令直接安装requests库使用 pip install requests 二、爬取JSON数据 (1)、点击网络 (2)、刷新网页 (3)、这里有一些数据类型,选择全部 &#xff08…...

5G CPE终端功能及性能评测(四)

5G CPE 功能性能评测 本文选取了几款在工业应用领域应用较多的5G CPE,对其功能和性能进行了对比评测。功能方面主要对比了网络接口数量,VPN功能 支持情况。以下测试为空口测试,测试结果受环境影响较大,性能仅供参考。总体看,高通X55芯片下行最优,速率稳定。 功能 对比CPE…...

人工智能驱动的骗局会模仿熟悉的声音

由于人工智能技术的进步,各种现代骗局变得越来越复杂。 这些骗局现在包括人工智能驱动的网络钓鱼技术,即使用人工智能模仿家人或朋友的声音和视频。 诈骗者使用来自社交媒体的内容来制作深度伪造内容,要求提供金钱或个人信息。个人应该通过…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

基于服务器使用 apt 安装、配置 Nginx

🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...