Hbase整合Mapreduce案例2 hbase数据下载至hdfs中——wordcount
目录
- 整合结构
- 准备
- 数据下载
- pom.xml
- Main.java
- Reduce.java
- Map.java
- 操作
- 总结
整合结构
和案例1的结构差不多,Hbase移动到开头,后面跟随MR程序。
因此对于输入的K1 V1会进行一定的修改
准备
- 在HBASE中创建表,并写入数据
create "wunaiieq:sentence","colf"
- 系统文件上传
datain3.java
package org.wunaiieq.hbase2hdfs;import org.apache.hadoop.hbase.TableName;
import org.apache.hadoop.hbase.client.Connection;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Table;
import org.apache.hadoop.hbase.util.Bytes;
import org.wunaiieq.HBaseConnection;
import org.wunaiieq.HbaseDML;import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;public class datain3 {public static Connection connection = HBaseConnection.connection;public static void main(String[] args) throws IOException {BufferedReader bufferedReader =new BufferedReader(new FileReader("/opt/module/jar/data.txt"));String line =null;Table table = connection.getTable(TableName.valueOf("wunaiieq", "sentence"));int rowkey = 1;while ((line=bufferedReader.readLine())!=null){Put put = new Put(Bytes.toBytes(rowkey));put.addColumn(Bytes.toBytes("colf"),Bytes.toBytes("line"),Bytes.toBytes(line));table.put(put);rowkey++;}bufferedReader.close();}
}

数据下载
pom.xml
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>org.hbase</groupId><artifactId>hbase2hdfs</artifactId><version>1.0-SNAPSHOT</version><properties><maven.compiler.source>8</maven.compiler.source><maven.compiler.target>8</maven.compiler.target><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><hadoop.version>3.1.3</hadoop.version><hbase.version>2.2.3</hbase.version></properties><dependencies><!-- Hadoop Dependencies --><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>${hadoop.version}</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>${hadoop.version}</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-hdfs</artifactId><version>${hadoop.version}</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-mapreduce-client-core</artifactId><version>${hadoop.version}</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-yarn-api</artifactId><version>${hadoop.version}</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-streaming</artifactId><version>${hadoop.version}</version></dependency><!-- HBase Dependencies --><dependency><groupId>org.apache.hbase</groupId><artifactId>hbase-client</artifactId><version>${hbase.version}</version></dependency><dependency><groupId>org.apache.hbase</groupId><artifactId>hbase-server</artifactId><version>${hbase.version}</version></dependency><dependency><groupId>org.apache.hbase</groupId><artifactId>hbase-common</artifactId><version>${hbase.version}</version></dependency><dependency><groupId>org.apache.hbase</groupId><artifactId>hbase-mapreduce</artifactId><version>${hbase.version}</version></dependency><!-- Other Dependencies --><dependency><groupId>com.google.protobuf</groupId><artifactId>protobuf-java</artifactId><version>3.19.1</version></dependency><dependency><groupId>org.slf4j</groupId><artifactId>slf4j-log4j12</artifactId><version>1.7.25</version></dependency><dependency><groupId>log4j</groupId><artifactId>log4j</artifactId><version>1.2.17</version></dependency><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>RELEASE</version><scope>compile</scope></dependency></dependencies><build><plugins><plugin><!--声明--><groupId>org.apache.maven.plugins</groupId><artifactId>maven-assembly-plugin</artifactId><version>3.3.0</version><!--具体配置--><configuration><archive><manifest><!--jar包的执行入口--><mainClass>org.wunaiieq.hbase2hdfs.Main</mainClass></manifest></archive><descriptorRefs><!--描述符,此处为预定义的,表示创建一个包含项目所有依赖的可执行 JAR 文件;允许自定义生成jar文件内容--><descriptorRef>jar-with-dependencies</descriptorRef></descriptorRefs></configuration><!--执行配置--><executions><execution><!--执行配置ID,可修改--><id>make-assembly</id><!--执行的生命周期--><phase>package</phase><goals><!--执行的目标,single表示创建一个分发包--><goal>single</goal></goals></execution></executions></plugin></plugins></build></project>
Main.java
package org.wunaiieq.hbase2hdfs;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.mapreduce.TableMapReduceUtil;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class Main {public static void main(String[] args) throws Exception {//配置文件,写在resources目录下Job job =Job.getInstance(new Configuration());//入口类job.setJarByClass(Main.class);Scan scan = new Scan();TableMapReduceUtil.initTableMapperJob("wunaiieq:sentence",//表名scan,//表输入时,可以在此处进行部分设置,如选择查询的列簇,列,过滤行等等org.wunaiieq.hbase2hdfs.Map.class,//指定mapper类Text.class,//k2IntWritable.class,//v2job,false);job.setOutputKeyClass(Text.class);//K3job.setOutputValueClass(IntWritable.class);//V3job.setReducerClass(org.wunaiieq.hbase2hdfs.Reduce.class);//手动输入输出路径FileOutputFormat.setOutputPath(job,new Path(args[0]));job.waitForCompletion(true);}
}
Reduce.java
package org.wunaiieq.hbase2hdfs;import org.apache.hadoop.hbase.client.Mutation;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.mapreduce.TableReducer;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;// K3 V3 K4 V4
public class Reduce extends Reducer<Text,IntWritable,Text,IntWritable>{private IntWritable v4 =new IntWritable();private Text k4 =new Text();@Overrideprotected void reduce(Text k3, Iterable<IntWritable> v3,Context context) throws IOException, InterruptedException {int sum =0;for (IntWritable v30:v3){sum+=v30.get();}v4.set(sum);k4=k3;context.write(k4,v4);}
}
Map.java
package org.wunaiieq.hbase2hdfs;import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.TableMapper;
import org.apache.hadoop.hbase.util.Bytes;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;
// K1 V1
public class Map extends TableMapper<Text,IntWritable> {private Text k2=new Text();private IntWritable v2 =new IntWritable(1);@Overrideprotected void map(ImmutableBytesWritable k1, Result v1,Context context) throws IOException, InterruptedException {System.out.println("k1:"+k1.toString());//读取当前行中的colf:line数据byte[] data =v1.getValue(Bytes.toBytes("colf"),Bytes.toBytes("line"));String line =Bytes.toString(data);String [] words =line.split(" ");for (String word :words){k2.set(word);context.write(k2,v2);}}
}
操作
打包上传至linux系统中
hadoop jar hbase2hdfs-1.0-SNAPSHOT-jar-with-dependencies.jar /output/test
检查文件
hdfs dfs -cat /output/test/part-r-00000
总结
没什么特殊点,记录下这两个案例即可,只需要在MR程序中替换掉对应的Mapper和Reducer即可
相关文章:
Hbase整合Mapreduce案例2 hbase数据下载至hdfs中——wordcount
目录 整合结构准备数据下载pom.xmlMain.javaReduce.javaMap.java操作 总结 整合结构 和案例1的结构差不多,Hbase移动到开头,后面跟随MR程序。 因此对于输入的K1 V1会进行一定的修改 准备 在HBASE中创建表,并写入数据 create "wunaii…...
diff算法
vue的diff算法详解 vue: diff 算法是一种通过同层的树节点进行比较的高效算法 其有两个特点: 比较只会在同层级进行, 不会跨层级比较 在diff比较的过程中,循环从两边向中间比较 diff 算法在很多场景下都有应用,在 vue 中&…...
最新AI问答创作运营系统(SparkAi系统),GPT-4.0/GPT-4o多模态模型+联网搜索提问+问答分析+AI绘画+管理后台系统
目录 一、人工智能 系统介绍文档 二、功能模块介绍 系统快速体验 三、系统功能模块 3.1 AI全模型支持/插件系统 AI大模型 多模态模型文档分析 多模态识图理解能力 联网搜索回复总结 3.2 AI智能体应用 3.2.1 AI智能体/GPTs商店 3.2.2 AI智能体/GPTs工作台 3.2.3 自…...
docker应用
docker version docker info docker images# 查看主机所以镜像 docker search# 搜索镜像 docker pull# 下载镜像 docker rmi# 删除镜像 docker tag 镜像名:版本 新镜像名:版本 # 复制镜像并改名 docker commit # 提交镜像 docker load -i /XXX/XXX.tar # 导入镜像 docker sav…...
COCO数据集理解
COCO(Common Objects in Context)数据集是一个用于计算机视觉研究的广泛使用的数据集,特别是在物体检测、分割和图像标注等任务中。COCO数据集由微软研究院开发,其主要特点包括: 丰富的标签:COCO数据集包含…...
C# 向上取整多种实现方法
1.使用 Math.Ceiling 方法: 在 C# 中,可以利用 System.Math 类下的 Math.Ceiling 方法来实现向上取整。它接受一个 double 或 decimal 类型的参数,并返回大于或等于该参数的最小整数(以 double 或 decimal 类型表示)。…...
Elastic Cloud Serverless:深入探讨大规模自动扩展和性能压力测试
作者:来自 Elastic David Brimley, Jason Bryan, Gareth Ellis 及 Stewart Miles 深入了解 Elasticsearch Cloud Serverless 如何动态扩展以处理海量数据和复杂查询。我们探索其在实际条件下的性能,深入了解其可靠性、效率和可扩展性。 简介 Elastic Cl…...
新一代零样本无训练目标检测
🏡作者主页:点击! 🤖编程探索专栏:点击! ⏰️创作时间:2024年12月2日21点02分 神秘男子影, 秘而不宣藏。 泣意深不见, 男子自持重, 子夜独自沉。 论文链接 点击开启你的论文编程之旅h…...
es 3期 第13节-多条件组合查询实战运用
#### 1.Elasticsearch是数据库,不是普通的Java应用程序,传统数据库需要的硬件资源同样需要,提升性能最有效的就是升级硬件。 #### 2.Elasticsearch是文档型数据库,不是关系型数据库,不具备严格的ACID事务特性ÿ…...
全局token验证
全局token验证 简介 通俗地说,JWT的本质就是一个字符串,它是将用户信息保存到一个Json字符串中,然后进行编码后得到一个JWT token,并且这个JWT token带有签名信息,接收后可以校验是否被篡改,所以可以用…...
实时美颜技术详解:美颜SDK与直播APP开发实践
通过集成美颜SDK(软件开发工具包),开发者能够轻松为直播APP提供实时美颜效果,改善用户的直播体验。本篇文章,小编将深入探讨实时美颜技术,重点分析美颜SDK的核心技术及其在直播APP中的应用实践。 一、实时…...
电子应用设计方案-41:智能微波炉系统方案设计
智能微波炉系统方案设计 一、引言 随着科技的不断进步,人们对于厨房电器的智能化需求日益增长。智能微波炉作为现代厨房中的重要设备,应具备更便捷、高效、个性化的功能,以满足用户多样化的烹饪需求。 二、系统概述 1. 系统目标 - 提供精确…...
P5736 【深基7.例2】质数筛
题目描述 输入 𝑛个不大于 105 的正整数。要求全部储存在数组中,去除掉不是质数的数字,依次输出剩余的质数。 输入格式 第一行输入一个正整数 𝑛,表示整数个数。 第二行输入 𝑛 个正整数 𝑎…...
数据结构初阶1 时间复杂度和空间复杂度
本章重点 算法效率时间复杂度空间复杂度常见时间复杂度以及复杂度OJ练习 1.算法效率 1.1 如何衡量一个算法的好坏 如何衡量一个算法的好坏呢?比如对于以下斐波那契数列: long long Fib(int N) { if(N < 3) return 1;return Fib(N-1) Fib(N-2); }斐…...
E130 PHP+MYSQL+动漫门户网站的设计与实现 视频网站系统 在线点播视频 源码 配置 文档 全套资料
动漫门户网站 1.摘要2. 开发背景和意义3.项目功能4.界面展示5.源码获取 1.摘要 21世纪是信息的时代,随着信息技术与网络技术的发展,其已经渗透到人们日常生活的方方面面,与人们是日常生活已经建立密不可分的联系。本网站利用Internet网络, M…...
OSCP - Proving Grounds - Fanatastic
主要知识点 CVE-2021-43798漏洞利用 具体步骤 执行nmap 扫描,22/3000/9090端口开放,应该是ssh,grafana 和Prometheus Nmap scan report for 192.168.52.181 Host is up (0.00081s latency). Not shown: 65532 closed tcp ports (reset) PORT STA…...
ArcMap 分享统计点要素、路网、降雨量等功能操作
ArcMap 分享统计点要素、路网等功能等功能操作今天进行 一、按格网统计点要素 1、创建公里网格统计单元 点击确定后展示 打开连接 点击后 展示 2、处理属性 1)查看属性表 每个小格都统计出了点的数量 2)查看属性 符号系统 点击应用后展示结果&#x…...
概率论——假设检验
解题步骤: 1、提出假设H0和H1 2、定类型,摆公式 3、计算统计量和拒绝域 4、定论、总结 Z检验 条件: 对μ进行检验,并且总体方差已知道 例题: 1、假设H0为可以认为是570N,H1为不可以认为是570N 2、Z…...
爬虫项目练手
python抓取优美图库小姐姐图片 整体功能概述 这段 Python 代码定义了一个名为 ImageDownloader 的类,其主要目的是从指定网站(https://www.umei.cc)上按照不同的图片分类,爬取图片并保存到本地相应的文件夹中。不过需要注意&…...
C程序设计:解决Fibonacci.数列问题
‘ 斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多斐波那契(Leonardo Fibonacci)以兔子繁殖为例子而引入,故又称“兔子数列”,其数值为:1、1、2、…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面
代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...
