当前位置: 首页 > news >正文

CEEMDAN-CPO-VMD二次分解(CEEMDAN+冠豪猪优化算法CPO优化VMD)

CEEMDAN-CPO-VMD二次分解(CEEMDAN+冠豪猪优化算法CPO优化VMD)

目录

    • CEEMDAN-CPO-VMD二次分解(CEEMDAN+冠豪猪优化算法CPO优化VMD)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

基本介绍

首先运用CEEMDAN对数据进行一次分解,之后运用冠豪猪优化算法(CPO)优化VMD对一次分解结果的第一个高频分量进行分解,充分提取信息。
实现平台:Matlab,中文注释清晰,非常适合科研小白
冠豪猪优化器(Crested Porcupine Optimizer,CPO)于2024年1月发表在中科院1区SCI期刊Knowledge-Based Systems上。
模型运行步骤:
1.利用冠豪猪优化算法优化VMD中的参数k、a,分解效果好,包含分解效果图、频率图、收敛曲线等图等。
2.冠豪猪优化算法CPO是24年最新提出的新算法
3.相较一次分解,二次分解更能准确提取数据信息,可用于更高精度的预测或分类
3.附赠测试数据 直接运行main即可一键出图

在这里插入图片描述

程序设计

  • 完整源码和数据获取方式私信回复Matlab基于CEEMDAN-CPO-VMD二次分解(CEEMDAN+冠豪猪优化算法CPO优化VMD)。
clear all
close all
clc
warning off
%% ceemdan分解
% 加载信号
signal=xlsread('data.xlsx');
%% 分解
addpath(genpath(pwd)) % 添加路径
D_num =5; 
IMF = decomposition_compilations(signal,D_num); % imf格式为:模态个数 x 数据长度rmpath(genpath(pwd)) % 移除路径
%% 绘图-最后一个imf可视为残差% plot_func(signal, IMF)%% 二次分解 CPO-VMD分解
%% 参数设置
data=IMF(1,:);
len=length(data);
f=data(1:len);% alpha = 2000;        % moderate bandwidth constraint
tau = 0;            % noise-tolerance (no strict fidelity enforcement)
% K = 4;              % 4 modes
DC = 0;             % no DC part imposed
init = 1;           % initialize omegas uniformly
tol = 1e-7;%% 普通VMD分解
%[u, u_hat, omega] = VMD(f, alpha, tau, K, DC, init, tol);
% 分解
[u1, u_hat1, omega1,curve,Target_pos] = WLVMD(f, tau, DC, init, tol);
figure
plot(curve,'linewidth',1.5);
title('收敛曲线')
xlabel('迭代次数')
ylabel('适应度值')
grid on%分解
figure
subplot(size(u1,1)+1,1,1);
plot(f,'k');grid on;
title('原始数据');
for i = 1:size(u1,1)subplot(size(u1,1)+1,1,i+1);plot(u1(i,:),'k');
enddisp(['最优K值为:',num2str(Target_pos(2))])
disp(['最优alpha值为:',num2str(Target_pos(1))])
disp(['最优综合指标为:',num2str(min(curve))])
%% 计时结束
%% 频域图

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关文章:

CEEMDAN-CPO-VMD二次分解(CEEMDAN+冠豪猪优化算法CPO优化VMD)

CEEMDAN-CPO-VMD二次分解(CEEMDAN冠豪猪优化算法CPO优化VMD) 目录 CEEMDAN-CPO-VMD二次分解(CEEMDAN冠豪猪优化算法CPO优化VMD)效果一览基本介绍程序设计参考资料 效果一览 基本介绍 首先运用CEEMDAN对数据进行一次分解&#xff…...

图论理论基础和存储方式的实现

图论1 图论 (Graph theory) 是数学的一个分支,图是图论的主要研究对象。图 (Graph) 是由若干给定的顶点及连接两顶点的边所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系。顶点用于代表事物,连接两顶点的边则用于表示两个事物…...

【实分析】【二】2.2 (c)自然数的序

文章目录 前言一、自然数的序的定义二、自然数的序的基本性质三、序的三歧性四、强归纳法原理总结 前言 在2.2 (b)的末尾,我们定义了自然数的正性,现在,我们来定义自然数的序,它是一种自然数的二元关系,通过加法进行定…...

STM32串口接收与发送(关于为什么接收不需要中断而发生需要以及HAL_UART_Transmit和HAL_UART_Transmit_IT的区别)

一、HAL_UART_Transmit和HAL_UART_Transmit_IT的区别 1. HAL_UART_Transmit_IT(非阻塞模式): HAL_UART_Transmit_IT 是非阻塞的传输函数,也就是说,当你调用 HAL_UART_Transmit_IT 时,它不会等到数据完全发…...

k8s 之storageclass使用nfs动态申请PV

文章目录 配置角色权限部署nfs-client-provisioner创建 NFS StorageClass创建 PVC 来动态申请 PV在 Pod 中使用 PVC验证存储是否正确挂载使用 kubectl 和 jq 筛选 PVCwaiting for a volume to be created, either by external provisioner "nfs-diy" or manually cre…...

vue移动端实现下载(截图)功能

前言 通过html2canvas实现截图功能然后保存 简介 html2canvas库允许我们直接在浏览器上拍摄网页或部分网页的“截图”,即浏览器实现截图的功能。 原理 屏幕截图是基于DO的。其基本原理就是读取已经渲染好的DOM元素的结构和样式信息,然后基于这些信息…...

【Golang】Golang基础语法之面向对象:结构体和方法

面向对象——结构 Go 仅支持封装,不支持继承和多态;继承和多态要做的事情交给接口来完成,即——面向接口编程。Go 只有 struct,没有 class。 定义一个最简单的树节点(treeNode)结构,方法如下&…...

【西门子PLC.博途】——在S71200里写时间设置和读取功能块

之前我们在这篇文章中介绍过如何读取PLC的系统时间。我们来看看在西门子1200里面有什么区别。同时也欢迎关注gzh。 我们在S71200的帮助文档中搜索时间后找到这个数据类型 在博途中他是一个结构体,具体为 然后我们再看看它带的读取和写入时间块 读取时间&#xff1…...

位运算(一)位运算简单总结

191. 位1的个数 给定一个正整数 n,编写一个函数,获取一个正整数的二进制形式并返回其二进制表达式中 设置位 的个数(也被称为 汉明重量)。 示例 1: 输入:n 11 输出:3 解释:输入的二…...

工厂方法模式的理解和实践

在软件开发中,设计模式是一种经过验证的解决特定问题的通用方案。工厂方法模式(Factory Method Pattern)是创建型设计模式之一,它提供了一种创建对象的接口,但由子类决定要实例化的类是哪一个。工厂方法让类的实例化推…...

C# 设计模式--观察者模式 (Observer Pattern)

定义 观察者模式是一种行为设计模式,它定义了对象之间的一对多依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都会得到通知并自动更新。观察者模式的核心在于解耦主题(被观察者)和观察者之间的依赖关系。 …...

【开发语言】层次状态机(HSM)介绍

层次状态机(Hierarchical State Machine, HSM),从基本原理、结构设计、实现方法以及如何结合 Qt 进行具体实现等方面进行分析。 1. 层次状态机的基本原理 层次状态机是一种用于管理复杂系统行为的状态机模型,它通过将状态组织成…...

03-13、SpringCloud Alibaba第十三章,升级篇,服务降级、熔断和限流Sentinel

SpringCloud Alibaba第十三章,升级篇,服务降级、熔断和限流Sentinel 一、Sentinel概述 1、Sentinel是什么 随着微服务的流行,服务和服务之间的稳定性变得越来越重要。Sentinel 以流量为切入点,从流量控制、熔断降级、系统负载保…...

【k8s 深入学习之 event 聚合】event count累记聚合(采用 Patch),Message 聚合形成聚合 event(采用Create)

参考 15.深入k8s:Event事件处理及其源码分析 - luozhiyun - 博客园event 模块总览 EventRecorder:是事件生成者,k8s组件通过调用它的方法来生成事件;EventBroadcaster:事件广播器,负责消费EventRecorder产生的事件,然后分发给broadcasterWatcher;broadcasterWatcher:用…...

leetcode104.二叉树的最大深度

给定一个二叉树 root ,返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:3示例 2: 输入:root [1,null,2] 输出…...

蓝桥杯2117砍竹子(简单易懂 包看包会版)

问题描述 这天, 小明在砍竹子, 他面前有 n 棵竹子排成一排, 一开始第 i 棵竹子的 高度为 hi​. 他觉得一棵一棵砍太慢了, 决定使用魔法来砍竹子。魔法可以对连续的一 段相同高度的竹子使用, 假设这一段竹子的高度为 H, 那么 用一次魔法可以 把这一段竹子的高度都变为 ⌊H2⌋…...

LCD与lvgl

LCD与lvgl 目录 LCD与lvgl 回顾 LCD 的驱动层讲解 1、LCD 的常见接口 2、我们的 LCD 的参数 3、LCD 的设备树说明 4、LCD 的设备树说明 5、如何移植 LCD 的驱动(重点) LCD 的应用层开发 1:LCD 应用开发->界面开发的方法 2:LVGL 模拟器安装 3:LVGL 工程创建和…...

SpringBoot 赋能:精铸超稳会员制医疗预约系统,夯实就医数据根基

1绪论 1.1开发背景 传统的管理方式都在使用手工记录的方式进行记录,这种方式耗时,而且对于信息量比较大的情况想要快速查找某一信息非常慢,对于会员制医疗预约服务信息的统计获取比较繁琐,随着网络技术的发展,采用电脑…...

android studio 读写文件操作(应用场景二)

android studio版本:2023.3.1 patch2 例程:readtextviewIDsaveandread 本例程是个过渡例程,如果单是实现下图的目的有更简单的方法,但这个方法是下一步工作的基础,所以一定要做。 例程功能:将两个textvi…...

小尺寸低功耗蓝牙模块在光伏清扫机器人上的应用

一、引言 随着可再生能源的迅速发展,光伏发电系统的清洁与维护变得越来越重要。光伏清扫机器人通过自动化技术提高了清洁效率,而蓝牙模组的集成为这些设备提供了更为智能的管理和控制方案。 二、蓝牙模组的功能与实现: 蓝牙模组ANS-BT103M…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

【Go语言基础【13】】函数、闭包、方法

文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...

Windows安装Miniconda

一、下载 https://www.anaconda.com/download/success 二、安装 三、配置镜像源 Anaconda/Miniconda pip 配置清华镜像源_anaconda配置清华源-CSDN博客 四、常用操作命令 Anaconda/Miniconda 基本操作命令_miniconda创建环境命令-CSDN博客...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

shell脚本质数判断

shell脚本质数判断 shell输入一个正整数,判断是否为质数(素数)shell求1-100内的质数shell求给定数组输出其中的质数 shell输入一个正整数,判断是否为质数(素数) 思路: 1:1 2:1 2 3:1 2 3 4:1 2 3 4 5:1 2 3 4 5-------> 3:2 4:2 3 5:2 3…...