PyTorch基本使用-张量的基本运算及函数计算
文章目录
- 1. 张量数值计算
- 1. 1 张量基本运算
- 1.2 点乘运算
- 1.3 矩阵运算
- 2. 张量运算函数
1. 张量数值计算
1. 1 张量基本运算
加减乘除取负号:
add、sub、mul、div、neg
add_ 、sub_、 mul_ 、div_、 neg_ (其中带下划线的版本会修改原数据)
data = torch.randint(0,10,[2,3])
print(data)
# 不修改原数据 相当于 data = data + 5
new_data=data.add(5)
print(new_data)
# 修改原数据 相当于 data += 3
data.add_(3)
print(data)
输出结果:
tensor([[8, 8, 4],[4, 1, 0]])
tensor([[13, 13, 9],[ 9, 6, 5]])
tensor([[11, 11, 7],[ 7, 4, 3]])
1.2 点乘运算
点乘运算是指两个同维矩阵相同位置的元素相乘,使用 mul或 运算发 *实现。
data1 = torch.randint(0,10,[2,3])
data2 = torch.randint(0,10,[2,3])
data3 = data1.mul(data2)
data4 = data1*data2
print(data1)
print(data2)
print(data3)
print(data4)
输出结果:
tensor([[4, 3, 8],[7, 4, 6]])
tensor([[0, 1, 9],[9, 8, 0]])
tensor([[ 0, 3, 72],[63, 32, 0]])
tensor([[ 0, 3, 72],[63, 32, 0]])
1.3 矩阵运算
矩阵乘法运算要求第一个矩阵 shape: (n, m),第二个矩阵 shape: (m, p), 两个矩阵点积运算 shape 为: (n, p)。
- 运算符 @ 用于进行两个矩阵的乘积运算
torch.matmul对进行乘积运算的两矩阵形状没有限定.对数输入的 shape 不同的张量, 对应的最后几个维度必须符合
矩阵运算规则
data1 = torch.tensor([[1, 2], [3, 4], [5, 6]])
data2 = torch.tensor([[5, 6], [7, 8]])
print('data1--->',data1)
print('data2--->',data2)
data3 = data1 @ data2
print('data3--->',data3)
data4 = torch.matmul(data1, data2)
print('data4--->',data4)
输出结果:
data1---> tensor([[1, 2],[3, 4],[5, 6]])
data2---> tensor([[5, 6],[7, 8]])
data3---> tensor([[19, 22],[43, 50],[67, 78]])
data4---> tensor([[19, 22],[43, 50],[67, 78]])
2. 张量运算函数
PyTorch 为每个张量封装了很多实用的计算函数:
- 均值
- 平方根
- 求和
- 指数计算
- 对数计算等等
data = torch.randint(1,10,[2,3],dtype=torch.float64)
print('data--->',data)
# 1. 计算均值
# 注意:tensor 必须为 Float 或者 Double 类型
print('均值:',data.mean())
print('列计算均值:',data.mean(dim=0))
print('行计算均值:',data.mean(dim=0))
# 2. 计算总和
print('求和:',data.sum())
print('列求和:',data.sum(dim=0))
print("行求和:",data.sum(dim=1))
# 3. 计算平方
print('平方:',torch.pow(data,2))
# 4. 计算平方根
print('平方根:',data.sqrt())
# 5. 指数计算,e ^ n 次方
print('e ^ n 次方:',data.exp())
# 6. 对数计算
print('e为底:',data.log())
print('2为底:',data.log2())
print('10为底:',data.log10())
输出结果:
data---> tensor([[8., 6., 7.],[9., 3., 7.]], dtype=torch.float64)
均值: tensor(6.6667, dtype=torch.float64)
列计算均值: tensor([8.5000, 4.5000, 7.0000], dtype=torch.float64)
行计算均值: tensor([8.5000, 4.5000, 7.0000], dtype=torch.float64)
求和: tensor(40., dtype=torch.float64)
列求和: tensor([17., 9., 14.], dtype=torch.float64)
行求和: tensor([21., 19.], dtype=torch.float64)
平方: tensor([[64., 36., 49.],[81., 9., 49.]], dtype=torch.float64)
平方根: tensor([[2.8284, 2.4495, 2.6458],[3.0000, 1.7321, 2.6458]], dtype=torch.float64)
e ^ n 次方: tensor([[2980.9580, 403.4288, 1096.6332],[8103.0839, 20.0855, 1096.6332]], dtype=torch.float64)
e为底: tensor([[2.0794, 1.7918, 1.9459],[2.1972, 1.0986, 1.9459]], dtype=torch.float64)
2为底: tensor([[3.0000, 2.5850, 2.8074],[3.1699, 1.5850, 2.8074]], dtype=torch.float64)
10为底: tensor([[0.9031, 0.7782, 0.8451],[0.9542, 0.4771, 0.8451]], dtype=torch.float64)
相关文章:
PyTorch基本使用-张量的基本运算及函数计算
文章目录 1. 张量数值计算1. 1 张量基本运算1.2 点乘运算1.3 矩阵运算 2. 张量运算函数 1. 张量数值计算 1. 1 张量基本运算 加减乘除取负号: add、sub、mul、div、neg add_ 、sub_、 mul_ 、div_、 neg_ (其中带下划线的版本会修改原数据) data torch.randin…...
C#--方法
C#的代码包装 三种实现途径:方法、类和名字空间。 • 方法是包含一系列语句的代码块。 • 类用于组合类,方法,属性。 • 将多个相关类组合成名字空间。 静态方法和静态变量 • 静态成员 在类中,使用static修饰符声明的成员称为静态…...
前端权限控制
前端权限控制 一、路由权限(控制页面访问) vue // router.js const routes [{path: /dashboard,name: Dashboard,component: () > import(/views/Dashboard.vue),meta: { requiresAuth: true, roles: [admin, manager] }},{path: /user,name: Use…...
mac下载安装jdk
背景 长时间不折腾mac全部忘记 特此记录 安装 1.下载jdk 根据需要下载对应的jdk 我直接 下载到/Applicatiions目录 https://www.oracle.com/java/technologies/downloads/#java8-mac 2.解压 cd /Applicatiions tar -zxvf jdk-8u431-macosx-x64.tar.gz 3.配置环境 …...
在线PS工具:UI设计的创新选择
对于刚踏入UI设计领域的新手来说,选择合适的在线Photoshop替代工具是至关重要的。市场上存在众多的在线设计工具,让人难以抉择。以下是10个值得尝试的在线PS工具,希望能帮助你找到最适合你的那一款。 Adobe Photoshop Photoshop是设计师们长…...
生成式AI概览与详解
1. 生成式AI概览:什么是大模型,大模型应用场景(文生文,多模态) 生成式AI(Generative AI)是指通过机器学习模型生成新的数据或内容的人工智能技术。生成式AI可以生成文本、图像、音频、视频等多种…...
数据结构与算法学习笔记----树与图的深度优先遍历
数据结构与算法学习笔记----树与图的深度优先遍历 author: 明月清了个风 first publish time: 2024.12.9 pa⭐️这里只有一道题哈哈。 Acwing 846.树的重心 给定一棵树,树中包含 n n n个节点(编号 1 ∼ n 1 \sim n 1∼n)和 n − 1 n - 1 n…...
IEEE T-RO 软体机器人手指状态估计实现两栖触觉传感
摘要:南方科技大学戴建生院士、林间院士、万芳老师、宋超阳老师团队近期在IEEE T-RO上发表了关于软体机器人手指在两栖环境中本体感知方法的论文。 近日,南方科技大学戴建生院士、林间院士、万芳老师、宋超阳老师团队在机器人顶刊IEEE T-RO上以《Propri…...
【NLP 14、激活函数 ② tanh激活函数】
学会钝感力,走向美好的方向 —— 24.12.11 一、tanh激活函数 1. tanh函数的定义 tanh是双曲正切函数(Hyperbolic Tangent),数学表达式为 其函数图像是一个S型曲线,以原点 (0,0) 为中心对称,定…...
前端如何实现签名功能
1.JS实现 前端实现签名功能,通常是通过在页面上创建一个可绘制的区域,用户可以用鼠标或触摸设备进行签名。这个区域通常是一个<canvas>元素,结合JavaScript来处理绘制和保存签名。下面是一个简单的实现步骤: 1.1. 创建HTM…...
若依将数据库更改为SQLite
文章目录 1. 添加依赖项2. 更新配置文件 application-druid.yml2.1. 配置数据源2.2. 配置连接验证 3. 更新 MybatisPlusConfig4. 解决 mapper 中使用 sysdate() 的问题4.1. 修改 BaseEntity4.2. 修改 Mapper 5. 更新 YML 配置 正文开始: 前提条件:在您的…...
CRMEB Pro版v3.2源码全开源+PC端+Uniapp前端+搭建教程
一.介绍 crmeb pro版 v3.2正式发布,全新UI重磅上线,焕然一新,不负期待!页面DIY设计功能全面升级,组件更丰富,样式设计更全面;移动端商家管理,让商城管理更便捷,还从页面…...
Docker 安装 Jenkins:2.346.3
准备:已安装Docker,已配置服务器安全组规则 1581 1、拉取镜像 [rootTseng ~]# docker pull jenkins/jenkins:2.346.3 2.346.3: Pulling from jenkins/jenkins 001c52e26ad5: Pull complete 6b8dd635df38: Pull complete 2ba4c74fd680: Pull complet…...
【OpenCV】模板匹配
理论 模板匹配是一种在较大图像中搜索和查找模板图像位置的方法。为此,OpenCV 带有一个函数 cv.matchTemplate() 。它只是在输入图像上滑动模板图像(如在 2D 卷积中),并比较模板图像下的模板和输入图像的补…...
黑马商城微服务复习(5)
MQ 一、同步调用和异步调用1. 同步调用2. 异步调用 二、RabbitMQ1. 基础使用2. 实际操作 怎么用?3. RabbitMQ虚拟主机 数据隔离4. 在JAVA中实现RabbitMQ5. 交换机种类 一、同步调用和异步调用 1. 同步调用 微服务一旦拆分,必然涉及到服务之间的相互调用ÿ…...
云原生基础设施指南:精通 Kubernetes 核心与高级用法
1. 云原生的诞生 随着互联网规模的不断增长,以及企业对敏捷开发、快速交付和高可用性的需求日益增强,传统的单体架构逐渐暴露出局限性,难以满足现代业务对动态扩展和高效迭代的要求。为此,云原生应运而生。 云原生是为云计算时代…...
人工智能概要
目录 前言1.什么是人工智能(Artificial Intelligence, AI)2.人工智能发展的三次浪潮2.1 人工智能发展的第一次浪潮2.2 人工智能发展的第二次浪潮2.3 人工智能发展的第三次浪潮 3.人工智能发展的必备三要素3.1 数据3.2 算法(algorithm…...
qt QCommandLineParser详解
1、概述 QCommandLineParser是Qt框架中提供的一个类,专门用于解析命令行参数。它简化了命令行参数的处理过程,使得开发者能够轻松定义、解析和验证命令行选项和参数。QCommandLineParser适用于需要从命令行获取输入的控制台应用程序,以及需要…...
力扣 K个一组翻转链表
K个一组翻转链表 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* ListNode() : val(0), next(nullptr) {}* ListNode(int x) : val(x), next(nullptr) {}* ListNode(int x, ListNode *next) : val(x), next(ne…...
cnocr配置及训练测试
cnocr配置及训练测试 1,相关链接2,已有模型调用测试(1)下载相关模型(2)Cnstd文本检测模型(3)模型调用解析脚本 3,自定义数据集训练测试(1)标签转换…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...
Golang——6、指针和结构体
指针和结构体 1、指针1.1、指针地址和指针类型1.2、指针取值1.3、new和make 2、结构体2.1、type关键字的使用2.2、结构体的定义和初始化2.3、结构体方法和接收者2.4、给任意类型添加方法2.5、结构体的匿名字段2.6、嵌套结构体2.7、嵌套匿名结构体2.8、结构体的继承 3、结构体与…...
uniapp 开发ios, xcode 提交app store connect 和 testflight内测
uniapp 中配置 配置manifest 文档:manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号:4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...
嵌入式常见 CPU 架构
架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集,单周期执行;低功耗、CIP 独立外设;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel(原始…...
ubuntu22.04 安装docker 和docker-compose
首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...
SpringCloud优势
目录 完善的微服务支持 高可用性和容错性 灵活的配置管理 强大的服务网关 分布式追踪能力 丰富的社区生态 易于与其他技术栈集成 完善的微服务支持 Spring Cloud 提供了一整套工具和组件来支持微服务架构的开发,包括服务注册与发现、负载均衡、断路器、配置管理等功能…...
