【NLP 11、Adam优化器】
祝你先于春天,
翻过此间铮铮山峦
—— 24.12.8
一、Adam优化器的基本概念
定义
Adam(Adaptive Moment Estimation)是一种基于梯度的优化算法,用于更新神经网络等机器学习模型中的参数。它结合了动量法(Momentum)和自适应学习率方法(如Adagrad和RMSProp)的优点,能够在训练过程中自适应地调整每个参数的学习率,并且利用动量来加速收敛和抑制震荡。
应用场景
广泛应用于深度学习中的各种任务,包括但不限于图像识别、自然语言处理、语音识别等。
例如,在训练卷积神经网络(CNN)进行图像分类任务时,或者在训练循环神经网络(RNN)和Transformer架构的模型用于自然语言处理任务时,Adam优化器都能有效地更新模型参数,使模型更快地收敛并获得较好的性能。
二、Adam优势:
Adam 优化算法应用在非凸优化问题中所获得的优势:
实现简单,计算高效,对内存需求少
参数的更新不受梯度的伸缩变换影响
超参数具有很好的解释性,且通常无需调整或仅需很少的微调
更新的步长能够被限制在大致的范围内(初始学习率)
能自然地实现步长退火过程(自动调整学习率)
很适合应用于大规模的数据及参数的场景
适用于不稳定目标函数
适用于梯度稀疏或梯度存在很大噪声的问题
三、基本机制
Adam 算法和传统的随机梯度下降不同。
随机梯度下降保持单一的学习率(即 alpha)更新所有的权重,学习率在训练过程中并不会改变。
而 Adam 通过计算梯度的一阶矩估计和二阶矩估计而为不同的参数设计独立的自适应性学习率。
记录前几次梯度的值,然后第一层进行求均值,第二层进行求均值的平方,再与当下轮次的梯度进行复合,得到这一轮的loss值,这个目的就是结合一些历史数据,然后自动调节当下轮次模型参数的学习率,对于不平稳的梯度进行更新
四、手动实现Adam算法
#adam梯度更新
def diy_adam(grad, weight):#参数应当放在外面,此处为保持后方代码整洁简单实现一步alpha = 1e-3 #学习率beta1 = 0.9 #超参数beta2 = 0.999 #超参数eps = 1e-8 #超参数t = 0 #初始化mt = 0 #初始化vt = 0 #初始化#开始计算t = t + 1gt = gradmt = beta1 * mt + (1 - beta1) * gtvt = beta2 * vt + (1 - beta2) * gt ** 2mth = mt / (1 - beta1 ** t)vth = vt / (1 - beta2 ** t)weight = weight - (alpha * mth/ (np.sqrt(vth) + eps))return weight
相关文章:
【NLP 11、Adam优化器】
祝你先于春天, 翻过此间铮铮山峦 —— 24.12.8 一、Adam优化器的基本概念 定义 Adam(Adaptive Moment Estimation)是一种基于梯度的优化算法,用于更新神经网络等机器学习模型中的参数。它结合了动量法(Momentum&…...
51单片机应用开发(进阶)---串口接收字符命令
实现目标 1、巩固UART知识; 2、掌握串口接收字符数据; 3、具体实现目标:(1)上位机串口助手发送多字符命令,单片机接收命令作相应的处理(如:openled1 即打开LED1;closeled1 即关…...
redis 怎么样删除list
在 Redis 中,可以使用以下方法删除列表或列表中的元素: 1. 删除整个列表 使用 DEL 命令删除一个列表键: DEL mylist这个命令会删除键 mylist 及其值(无论 mylist 是一个列表还是其他类型的键)。 2. 删除列表中的部分…...
【数据结构——内排序】快速排序(头歌实践教学平台习题)【合集】
目录😋 任务描述 测试说明 我的通关代码: 测试结果: 任务描述 本关任务:实现快速排序算法。 测试说明 平台会对你编写的代码进行测试: 测试输入示例: 10 6 8 7 9 0 1 3 2 4 5 (说明:第一行是元素个数&a…...
npm或yarn包配置地址源
三种方法 1.配置.npmrc 文件 在更目录新增.npmrc文件 然后写入需要访问的包的地址 2.直接yarn.lock文件里面修改地址 简单粗暴 3.yarn install 的时候添加参数 设置包的仓库地址 yarn config set registry https://registry.yarnpkg.com 安装:yarn install 注意…...
STUN服务器用于内网NAT的方案
在内网中部署 STUN 服务器的场景通常用于处理多层 NAT 或内网客户端之间的通信需求,尤其是在大企业或学校等复杂网络环境下。通过 STUN 服务器,可以帮助客户端设备检测和适配 NAT 转换规则,进而支持 WebRTC 或其他实时通信技术的正常运行。 …...
Linux 简单命令总结
1. 简单命令 1.1. ls 列出该目录下的所有子目录与文件,后面还可以跟上一些选项 常用选项: ・-a 列出目录下的所有文件,包括以。开头的隐含文件。 ・-d 将目录象文件一样显示,而不是显示其下的文件。如:ls -d 指定目…...
Vue.js组件开发:提升你的前端工程能力
Vue.js 是一个用于构建用户界面的渐进式框架,它允许开发者通过组件化的方式创建可复用且易于管理的代码。在 Vue.js 中开发组件是一个直观且高效的过程,下面我将概述如何创建和使用 Vue 组件,并提供一些最佳实践。 1. 创建基本组件 首先&am…...
使用 Pandas 读取 JSON 数据的五种常见结构解析
文章目录 引言JSON 数据的五种常见结构1. split 结构2. records 结构3. index 结构4. columns 结构5. values 结构 引言 在日常生活中,我们经常与各种数据打交道,无论是从网上购物的订单信息到社交媒体上的动态更新。JSON(JavaScript Object…...
C++鼠标轨迹算法(鼠标轨迹模拟真人移动)
一.简介 鼠标轨迹算法是一种模拟人类鼠标操作的程序,它能够模拟出自然而真实的鼠标移动路径。 鼠标轨迹算法的底层实现采用C/C语言,原因在于C/C提供了高性能的执行能力和直接访问操作系统底层资源的能力。 鼠标轨迹算法具有以下优势: 模拟…...
Go mysql驱动源码分析
文章目录 前言注册驱动连接器创建连接交互协议读写数据读数据写数据 mysqlConncontext超时控制 查询发送查询请求读取查询响应 Exec发送exec请求读取响应 预编译客户端预编译服务端预编译生成prepareStmt执行查询操作执行Exec操作 事务读取响应query响应exec响应 总结 前言 go…...
GNSS误差源及差分定位
GNSS误差源: (一)卫星星历误差 由星历信息所得出的卫星位置坐标与实际位置坐标的偏差就是星历误差。星历信息是由 GPS 地面部分测量计算后传入空间部分的。由于卫星在运动中要受到各种摄动力的作用, 而地面部分又很难精确测量这些作用力,…...
pg数据类型
1、数值类型: smallint 2 字节 小范围整数 -32768 到 32767 integer 4 字节 常用的整数 -2147483648 到 2147483647 bigint 8 字节 大范围整数 -9223372036854775808 到 9223372036854775807 decimal 可变长 用户指定的精度&#x…...
【java】finalize方法
目录 1. 说明2. 调用过程3. 注意事项 1. 说明 1.finalize方法是Java中Object类的一个方法。2.finalize方法用于在对象被垃圾回收之前执行一些清理工作。3.当JVM(Java虚拟机)确定一个对象不再被引用、即将被回收时,会调用该对象的finalize方法…...
HNU_多传感器(专选)_作业4(构建单层感知器实现分类)
1. (论述题)(共1题,100分) 假设平面坐标系上有四个点,要求构建单层感知器实现分类。 (3,3),(4,3) 两个点的标签为1; (1,1),(0,2) 两个点的标签为-1。 思路:要分类的数据是2维数据,需要2个输入…...
以太网链路详情
文章目录 1、交换机1、常见的概念1、冲突域2、广播域3、以太网卡1、以太网卡帧 4、mac地址1、mac地址表示2、mac地址分类3、mac地址转换为二进制 2、交换机的工作原理1、mac地址表2、交换机三种数据帧处理行为3、为什么会泛洪4、转发5、丢弃 3、mac表怎么获得4、同网段数据通信…...
vue3 setup语法,子组件点击一个元素打印了这个元素的下标id,怎么传递给父组件,让父组件去使用
问: vue3 setup语法,子组件点击一个元素打印了这个元素的下标id,怎么传递给父组件,让父组件去使用 回答: 在 Vue 3 中,你可以使用 setup 语法糖和组合式 API 来实现子组件向父组件传递数据。具体来说&am…...
《Keras3 minist 手写数字AI模型训练22秒精度达到:0.97》
《Keras3 minist 手写数字AI模型训练22秒精度达到:0.97》 一、修改源码加上如下两条代码二、源码修改如下三、Keras3 minist 训练22秒结束,训练过程截图四、Keras3 minist 源码截图 一、修改源码加上如下两条代码 import os os.environ["KERAS_BAC…...
【.net core】【sqlsugar】大数据写入配置(需要版本5.0.45)
官网连接 https://www.donet5.com/home/Doc?typeId2404 泛型方法 /// <summary> /// 大数据写入(泛型方法) /// </summary> /// <param name"entitys"></param> /// <returns></returns> ///代码中_d…...
ansible运维实战
通过学习ansible自动化运维,初步对ansible有了一定的了解,此次分享两个案例,希望对大家有所帮助 案例一:自动化安装nginx 本次案例目的是ansible自动化安装nginx并配置 首先创建如图所示目录 在主机上安装好nginx,如…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
