当前位置: 首页 > news >正文

【机器学习】基础知识:拟合度(Goodness of Fit)

拟合度概念及意义

拟合度(Goodness of Fit)是衡量统计模型对数据解释能力的指标,用于评价模型对观测数据的拟合效果。在回归分析、分类模型或其他预测模型中,拟合度是模型性能的重要衡量标准。


1. 拟合度的作用

拟合度的主要作用包括:

  • 评估模型质量:衡量模型对实际数据的解释程度,帮助判断模型是否合理。
  • 变量筛选:通过拟合度分析,确定哪些变量对模型贡献较大。
  • 模型选择:在多个候选模型中,选择拟合度更高的模型。

2. 拟合度的常用指标

回归分析中的拟合度指标
  1. 决定系数 R^2
    R^2 表示解释变量(自变量)能够解释响应变量(因变量)变异的比例:

    R^2 = 1 - \frac{\text{SSR}}{\text{SST}}
    • SSR:残差平方和,表示模型未能解释的变异。
    • SST:总平方和,表示观测值的总变异。

    R^2 范围为 0 到 1,值越接近 1,模型拟合效果越好。

  2. 调整 R^2
    调整 R^2 引入了模型自由度的惩罚,适用于变量较多的模型:

    \text{Adjusted } R^2 = 1 - \left( \frac{\text{SSR} / (n - k - 1)}{\text{SST} / (n - 1)} \right)

    其中,n 是样本数,k 是自变量数。

  3. 均方误差(MSE)
    衡量模型预测值与真实值之间的平均误差平方:

    \text{MSE} = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2

    值越小,模型拟合越好。

  4. 均方根误差(RMSE)
    均方误差的平方根:

    \text{RMSE} = \sqrt{\text{MSE}}
分类模型中的拟合度指标
  1. 准确率(Accuracy)

    Accuracy = 正确分类的样本数 / 总样本数
  2. F1 分数
    F1 分数结合了准确率和召回率,适用于类别不平衡的场景:

    F1 = 2 \cdot \frac{\text{Precision} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}
  3. 对数似然(Log-Likelihood)
    用于衡量模型与数据的匹配程度,特别是在广义线性模型中。


3. 拟合度与过拟合

过拟合(Overfitting)是拟合度分析中的一个重要问题。当模型过于复杂时,尽管拟合度指标(如 R^2可能较高,但模型对新数据的泛化能力较差。因此,需通过交叉验证等方法评估模型的真实性能。


4. 提高模型拟合度的方法

  1. 特征工程:选择相关性强的变量,剔除冗余或噪声变量。
  2. 正则化:使用 L1 或 L2 正则化限制模型复杂度,防止过拟合。
  3. 非线性模型:若线性模型拟合度较低,可以尝试使用非线性模型。
  4. 增加样本量:更多的数据可以提高模型的稳定性和泛化能力。

import numpy as np
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score, mean_squared_error# 示例数据
X = np.array([[1], [2], [3], [4], [5]])
y = np.array([1.1, 2.0, 2.9, 4.1, 5.2])# 线性回归模型
model = LinearRegression()
model.fit(X, y)
y_pred = model.predict(X)# 拟合度指标
r2 = r2_score(y, y_pred)  # 决定系数 R^2
mse = mean_squared_error(y, y_pred)  # 均方误差
rmse = np.sqrt(mse)  # 均方根误差print(f"R^2: {r2:.4f}")
print(f"MSE: {mse:.4f}")
print(f"RMSE: {rmse:.4f}")

输出结果

R^2: 0.9960
MSE: 0.0086
RMSE: 0.0927

6. 总结

拟合度是衡量模型质量的重要标准。不同场景中可选择适合的拟合度指标(如 R^2、MSE 或 F1 分数)进行评估。此外,在提升拟合度的同时需警惕过拟合现象,确保模型具有良好的泛化能力。

相关文章:

【机器学习】基础知识:拟合度(Goodness of Fit)

拟合度概念及意义 拟合度(Goodness of Fit)是衡量统计模型对数据解释能力的指标,用于评价模型对观测数据的拟合效果。在回归分析、分类模型或其他预测模型中,拟合度是模型性能的重要衡量标准。 1. 拟合度的作用 拟合度的主要作用…...

使用Jackson库在Java应用程序中将Map对象转换为JSON数组字符串,以及反向操作

在现代Java应用程序中,特别是使用RESTful Web服务时,经常需要将Java对象转换为JSON格式,反之亦然。 当表示如用户管理系统中的用户列表这样的数据结构时,将Map转换为JSON数组字符串变得非常有用。在这个指南中,我们将…...

深入解析强化学习中的 Generalized Advantage Estimation (GAE)

中文版 深入解析强化学习中的 Generalized Advantage Estimation (GAE) 1. 什么是 Generalized Advantage Estimation (GAE)? 在强化学习中,计算策略梯度的关键在于 优势函数(Advantage Function) 的设计。优势函数 ( A ( s , a ) A(s, a…...

离开wordpress

wordpress确实挺好用的 插件丰富 主题众多 收费的插件也很多 国内的做主题的也挺好 但是服务器跑起来各种麻烦伤脑筋 需要花在维护的时间太多了 如果你的网站持续盈利 你就会更担心访问质量访问速度 而乱七八糟的爬虫黑客 让你的服务器不堪重负 突然有一天看到了静态站…...

Python的3D可视化库【vedo】1-4 (visual模块) 体素可视化、光照控制、Actor2D对象

文章目录 6. VolumeVisual6.1 关于体素6.2 显示效果6.2.1 遮蔽6.2.2 木纹或磨砂效果 6.3 颜色和透明度6.3.1 透明度衰减单位6.3.2 划分透明度标量梯度6.3.3 设置颜色或渐变6.3.4 标量的计算模式6.3.5 标量的插值方式 6.4 过滤6.4.1 按单元格id隐藏单元格6.4.2 按二进制矩阵设置…...

使用html和JavaScript实现一个简易的物业管理系统

码实现了一个简易的物业管理系统,主要使用了以下技术和功能: 1.主要技术 使用的技术: HTML: 用于构建网页的基本结构。包括表单、表格、按钮等元素。 CSS: 用于美化网页的外观和布局。设置字体、颜色、边距、对齐方式等样式。 JavaScript…...

什么是纯虚函数?什么是抽象类?纯虚函数和抽象类在面向对象编程中的意义是什么?

纯虚函数 纯虚函数是一个在基类中声明但不实现的虚函数。它的声明方式是在函数声明的末尾添加 0。这意味着这个函数没有提供具体的实现,任何继承这个基类的派生类都必须提供这个函数的实现,否则它们也会变成抽象类,无法实例化。 示例&#…...

#Ts篇: Record<string, number> 是 TypeScript 中的一种类型定义,它表示一个键值对集合

Record<string, number> 是 TypeScript 中的一种类型定义&#xff0c;它表示一个键值对集合&#xff0c;其中键的类型是 string&#xff0c;而值的类型是 number。具体来说&#xff0c;Record<K, T> 是 TypeScript 的一个内置高级类型&#xff0c;用于根据传入的键…...

Exp 智能协同管理系统前端首页框架开发

一、 需求分析 本案例的主要目标是开发一个智能学习辅助系统的前端界面&#xff0c;涵盖以下功能模块&#xff1a; 首页&#xff1a;显示系统的总体概览和关键功能介绍。 班级学员管理&#xff1a;实现班级管理和学员管理。 系统信息管理&#xff1a;管理部门和员工信息。 …...

C# 备份文件夹

C# 备份目标文件夹 方法1&#xff1a;通过 递归 或者 迭代 结合 C# 方法 参数说明&#xff1a; sourceFolder&#xff1a;源文件夹路径destinationFolder&#xff1a;目标路径excludeNames&#xff1a;源文件夹中不需备份的文件或文件夹路径哈希表errorLog&#xff1a;输出错…...

互联网信息泄露与安全扫描工具汇总

文章目录 1. 代码托管平台渠道泄露2. 网盘渠道泄露3. 文章渠道泄露4. 文档渠道泄露5. 暗网渠道泄露6. 互联网IP信誉度排查7. 网站挂马暗链扫描8. 互联网IP端口扫描9. 互联网资产漏洞扫描 1. 代码托管平台渠道泄露 https://github.com/ https://gitee.com/ https://gitcode.co…...

主导极点,传递函数零极点与时域模态

运动模态 控制系统的数学建模&#xff0c;可以采用微分方程或传递函数&#xff0c;两者具有相同的特征方程。在数学上&#xff0c;微分方程的解由特解和通解组成&#xff0c;具体求解过程可以参考&#xff1a;微分方程求解的三种解析方法。 如果 n n n阶微分方程&#xff0c;具…...

永恒之蓝漏洞利用什么端口

永恒之蓝&#xff08;EternalBlue&#xff09;是一个著名的漏洞&#xff0c;影响了 Windows 操作系统的 SMBv1 服务。它的漏洞编号是 CVE-2017-0144&#xff0c;该漏洞被用于 WannaCry 等勒索病毒的传播。 永恒之蓝漏洞利用的端口 永恒之蓝漏洞利用的是 SMB&#xff08;Server…...

网络安全与防范

1.重要性 随着互联网的发达&#xff0c;各种WEB应用也变得越来越复杂&#xff0c;满足了用户的各种需求&#xff0c;但是随之而来的就是各种网络安全的问题。了解常见的前端攻击形式和保护我们的网站不受攻击是我们每个优秀fronter必备的技能。 2.分类 XSS攻击CSRF攻击网络劫…...

Navicat 17 功能简介 | SQL 开发

Navicat 17 功能简介 | SQL 开发 随着 17 版本的发布&#xff0c;Navicat 也带来了众多的新特性&#xff0c;包括兼容更多数据库、全新的模型设计、可视化智能 BI、智能数据分析、可视化查询解释、高质量数据字典、增强用户体验、扩展 MongoDB 功能、轻松固定查询结果、便捷URI…...

嵌入式系统中的并行编程模型:汇总解析与应用

概述&#xff1a;随着嵌入式系统处理能力的不断提升&#xff0c;并行编程在其中的应用愈发广泛。本文深入探讨了多种专门为嵌入式设计的并行编程模型&#xff0c;包括任务队列模型、消息传递模型、数据并行模型、异构多核并行模型、实时任务调度模型以及函数式并行模型。详细阐…...

VulkanSamples编译记录

按照BUILD.md说明&#xff0c;先安装依赖项 sudo apt-get install git build-essential libx11-xcb-dev \libxkbcommon-dev libwayland-dev libxrandr-dev 然后创建一个新文件夹build&#xff0c;在该目录下更新依赖项 cd VulkanSamples mkdir build cd build python ../scr…...

使用FabricJS对大图像应用滤镜(巨坑)

背景:我司在canvas的渲染模板的宽高都大于2048px 都几乎接近4000px&#xff0c;就导致使用FabricJS的滤镜功能图片显示异常 新知识:滤镜是对图片纹理的处理 FabricJS所能支持的最大图片纹理是2048的 一但图片超出2048的纹理尺寸 当应用滤镜时&#xff0c;图像会被剪切或者是缩…...

网页502 Bad Gateway nginx1.20.1报错与解决方法

目录 网页报错的原理 查到的502 Bad Gateway报错的原因 出现的问题和尝试解决 问题 解决 网页报错的原理 网页显示502 Bad Gateway 报错原理是用户访问服务器时&#xff0c;nginx代理服务器接收用户信息&#xff0c;但无法反馈给服务器&#xff0c;而出现的报错。 查到…...

Spring基础分析02-BeanFactory与ApplicationContext

大家好&#xff0c;今天和大家一起学习整理一下Spring 的BeanFactory和ApplicationContext内容和区别~ BeanFactory和ApplicationContext是Spring IoC容器的核心组件&#xff0c;负责管理应用程序中的Bean生命周期和配置。我们深入分析一下这两个接口的区别、使用场景及其提供…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

安卓基础(aar)

重新设置java21的环境&#xff0c;临时设置 $env:JAVA_HOME "D:\Android Studio\jbr" 查看当前环境变量 JAVA_HOME 的值 echo $env:JAVA_HOME 构建ARR文件 ./gradlew :private-lib:assembleRelease 目录是这样的&#xff1a; MyApp/ ├── app/ …...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

蓝桥杯 冶炼金属

原题目链接 &#x1f527; 冶炼金属转换率推测题解 &#x1f4dc; 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V&#xff0c;是一个正整数&#xff0c;表示每 V V V 个普通金属 O O O 可以冶炼出 …...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...