当前位置: 首页 > news >正文

验证集和测试集的区别

验证集(Validation Set)和测试集(Test Set)在机器学习模型训练过程中扮演着不同的角色,以下是它们之间的主要区别:

目的:

  • 验证集:用于在模型训练过程中调整模型的超参数和做出训练决策,如选择模型类型、决定何时停止训练以防止过拟合等。
  • 测试集:用于在模型训练完成后评估模型的泛化能力,即模型在未见过的数据上的表现。测试集是模型最终性能的“黄金标准”。

使用频率:

  • 验证集:在模型训练过程中可能会多次使用,因为需要不断调整和优化模型。
  • 测试集:通常只在模型训练完成后使用一次,以避免信息泄露,确保评估结果的客观性和公正性。

数据来源:

  • 验证集:通常是从训练数据中划分出来的一个子集。
  • 测试集:应该来自与训练集不同的数据分布,确保评估的是模型在真实世界数据上的表现。

数据处理:

  • 验证集:在模型训练过程中可能会根据验证结果调整数据预处理步骤或模型结构。
  • 测试集:不应该用于任何形式的模型调整或数据预处理,以保持其作为最终评估标准的独立性。

交叉验证:

  • 在某些情况下,特别是在数据量有限时,会使用交叉验证(Cross-Validation)来代替或补充验证集。在交叉验证中,数据被分成几个子集,每个子集轮流作为验证集,其余作为训练集。
    总结来说,验证集用于模型选择和调优,而测试集用于评估最终模型的性能。正确使用验证集和测试集是确保机器学习模型可靠性和有效性的关键步骤。

相关文章:

验证集和测试集的区别

验证集(Validation Set)和测试集(Test Set)在机器学习模型训练过程中扮演着不同的角色,以下是它们之间的主要区别: 目的: 验证集:用于在模型训练过程中调整模型的超参数和做出训练…...

OpenIPC开源FPV之Adaptive-Link天空端代码解析

OpenIPC开源FPV之Adaptive-Link天空端代码解析 1. 源由2. 框架代码3. 报文处理3.1 special报文3.2 普通报文 4. 工作流程4.1 Profile 竞选4.2 Profile 研判4.3 Profile 应用 5. 总结6. 参考资料7. 补充资料7.1 RSSI 和 SNR 的物理含义7.2 信号质量加权的理论依据7.3 实际应用中…...

Next.js流量教程:核心 Web Vitals的改善

更多有关Next.js教程,请查阅: 【目录】Next.js 独立开发系列教程-CSDN博客 目录 引言 1. 什么是 Core Web Vitals? 1.1 Largest Contentful Paint (LCP) 1.2 First Input Delay (FID) 1.3 Cumulative Layout Shift (CLS) 2. 如何优化 …...

百度智能云千帆AppBuilder升级,百度AI搜索组件上线,RAG支持无限容量向量存储!

百度智能云千帆 AppBuilder 发版升级! 进一步降低开发门槛,落地大模型到应用的最后一公里。在千帆 AppBuilder 最新升级的 V1.1版本中,企业级 RAG 和 Agent 能力再度提升,同时组件生态与应用集成分发更加优化。 • 企业级 RAG&am…...

构建树莓派温湿度监测系统:从硬件到软件的完整指南

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…...

12.11数据结构-图

无向完全图:在无向图中,如果任意两个顶点之间都存在边,则称该图为无向完全图。 有向完全图:在有向图中,如果任意两个顶点之间都存在方向相反的两条弧,则称该图为有向完全图。 含有n个顶点的无向完全图有…...

BERT模型入门(2)BERT的工作原理

文章目录 如名称所示,BERT(来自Transformer的双向编码器表示)是基于Transformer模型。我们可以将BERT视为只有编码器部分的Transformer。 在上一个主题《Transformer入门》中,我们了解到将句子作为输入喂给Transformer的编码器&a…...

python3 中的成员运算符

一. 简介 在Python 3中,成员运算符用于测试序列(如字符串、列表、元组、集合或字典)中是否包含某个值。身份运算符用于比较两个对象的身份,即它们是否引用内存中的同一个对象。 本文简单学习一下 python3 中的成员运算符与身份运…...

【测试面试篇1】测试开发与开发|selenium实现自动化测试|设计测试用例|常见的测试方法|开发不认可提测试的bug该怎么办

目录 1.选择走测试为什么还要学这么多的开发知识? 2.为什么选择软件测试开发岗位而不是软件开发岗位? 3.个人的职业规划是什么? 4.测试中遇到的问题如何进行解决? 5.对自己的项目做过哪些测试工作? 6.描述selenium…...

人大金仓数据linux安装注意事项

人大金仓数据linux安装注意事项 本次是个人搭建虚拟机安装centos7的环境下进行安装。 1、安装流程参照https://help.kingbase.com.cn/v9/install-updata/install-linux/preface.html。 2、mount安装文件报错 操作手册提供mount的命令如下: mount KingbaseES_V009R0…...

【Maven】多模块项目的构建

项目构建 什么是构建? 项目构建指的是将源代码和资源文件转换为可执行或可分发的软件制品(如 JAR、WAR 文件)的过程。这个过程不仅包括编译代码,还包括运行测试、打包、部署等步骤。Maven 提供了一套标准化的方法来处理这些任务…...

大模型学习笔记------SAM模型详解与思考

大模型学习笔记------SAM模型详解与思考 1、SAM框架概述2、Segment Anything Task3、Segment Anything Model SAM模型是Meta 提出的分割一切模型(Segment Anything Model,SAM)突破了分割界限,极大地促进了计算机视觉基础模型的发展…...

crictl和ctr与docker的命令的对比

crictl是遵循CRI接口规范的一个命令行工具,通常用它来检查和管理kubelet节点上的容器运行时和镜像 ctr是containerd的一个客户端工具, 接下来就是crictl的的常见命令,其中能完全替代docker命令的参照下列表格 操作crictldocker查看运行容器…...

SQLite建表语句示例(含所有数据类型、索引、自增主键、唯一索引)

下面是一个示例,展示如何创建一个用户信息表。 包含 SQLite 支持的所有数据类型,同时设置主键为自增、一个字段为唯一索引,以及另一个字段为普通索引: -- 创建用户信息表 CREATE TABLE user_info (id INTEGER PRIMARY KEY AUTOI…...

探秘Redis哨兵模式:原理、运行与风险全解析

一、引言 Redis 概述 在当今的数据存储领域,Redis 占据着十分重要的地位。它是一个内存中的数据存储,凭借其出色的性能和丰富的功能,被数百万开发人员广泛应用于诸多场景之中,已然成为构建高性能、可扩展应用程序的得力工具。 从…...

.NET平台使用C#设置Excel单元格数值格式

设置Excel单元格的数字格式是创建、修改和格式化Excel文档的关键步骤之一,它不仅确保了数据的正确表示,还能够增强数据的可读性和专业性。正确的数字格式可以帮助用户更直观地理解数值的意义,减少误解,并且对于自动化报告生成、财…...

零基础学安全--wireshark简介

目录 主要功能 捕获网络数据包 协议解析 数据包分析 数据包重组 过滤功能 统计与图表功能 官网 Wireshark是一个开源的网络协议分析工具 主要功能 捕获网络数据包 能够实时捕获网络中传输的数据包,用户选择要监听的网络接口(如以太网、WiFi等…...

[Flutter] : Clipboard

import package:flutter/material.dart; import package:flutter/services.dart; setData Clipboard.setData(ClipboardData(text: "传入的文字内容")); getData Clipboard.getData(Clipboard.kTextPlain) 记录 | Flutter剪切板-刨根问底做一个可以在后台…...

ArcGIS MultiPatch数据转换Obj数据

文章目录 ArcGIS MultiPatch数据转换Obj数据1 效果2 技术路线2.1 Multipatch To Collada2.2 Collada To Obj3 代码实现4 附录4.1 环境4.2 一些坑ArcGIS MultiPatch数据转换Obj数据 1 效果 2 技术路线 MultiPatch --MultipatchToCollada–> Collada --Assimp–> Obj 2.…...

《开源数据:开启信息共享与创新的宝藏之门》

《开源数据:开启信息共享与创新的宝藏之门》 一、开源数据概述(一)开源数据的定义(二)开源数据的发展历程 二、开源数据的优势(一)成本效益优势(二)灵活性与可定制性&…...

如何评估基于TRIZ理论生成的方案的可行性和有效性?

在科技创新与问题解决的过程中,TRIZ理论(发明问题解决理论)以其系统性和高效性著称,为工程师和创新者提供了一套强大的工具和方法。然而,仅仅依靠TRIZ理论生成创新方案并不足以确保项目的成功,关键在于如何…...

sh-寡肽-78——头发护理多肽原料,改善头发外观

主要特征 人的头发纤维结构由角质层、皮质和髓质组成。角质层约占头发重量的 15%,由重叠的细胞层组成,类似于鳞片系统,半胱氨酸含量很高。它为头发纤维提供保护作用。皮质是头发的中间区域,负责头发的强度、弹性和颜色。它由多种细…...

metagpt 多智能体系统

metagpt 多智能体系统 代码1. 动作及角色定义2. 主函数 代码解释1. 导入模块:2. 环境设置:3. 定义行动(Action):4. 定义角色(Role):5. 学生和老师的行为:6. 主函数&#…...

下采样在点云处理中的关键作用——以PointNet++为例【初学者无门槛理解版!】

一、前言 随着3D传感器技术的快速发展,点云数据在计算机视觉、机器人导航、自动驾驶等领域中的应用日益广泛。点云作为一种高效的3D数据表示方式,能够精确地描述物体的几何形状和空间分布。然而,点云数据通常具有高维度和稀疏性的特点&#…...

pytorch ---- torch.linalg.norm()函数

torch.linalg.norm 是 PyTorch 中用于计算张量范数(Norm)的函数。范数是线性代数中的一个重要概念,用于量化向量或矩阵的大小或长度。这个函数可以处理任意形状的张量,支持多种类型的范数计算。 1.函数签名 torch.linalg.norm(…...

系列1:基于Centos-8.6部署Kubernetes (1.24-1.30)

每日禅语 “木末芙蓉花,山中发红萼,涧户寂无人,纷纷开自落。​”这是王维的一首诗,名叫《辛夷坞》​。这首诗写的是在辛夷坞这个幽深的山谷里,辛夷花自开自落,平淡得很,既没有生的喜悦&#xff…...

spring学习(spring-bean实例化(无参构造与有参构造方法实现)详解)

目录 一、spring容器之bean的实例化。 (1)"bean"基本概念。 (2)spring-bean实例化的几种方式。 二、spring容器使用"构造方法"的方式实例化bean。 (1)无参构造方法实例化bean。 &#…...

Arm Cortex-M处理器对比表

Arm Cortex-M处理器对比表 当前MCU处理器上主要流行RISC-V和ARM处理器,其他的内核相对比较少;在这两种内核中,又以Arm Cortex-M生态环境相对健全,大部分的厂家都在使用ARM的处理器。本文主要介绍Arm Cortex-M各个不同系列的参数对…...

【git、gerrit】特性分支合入主分支方法 git rebase 、git cherry-pick、git merge

文章目录 1. 场景描述1.1 分支状态 2. 推荐的操作方式方法 1:git merge(保留分支结构)方法 2:git rebase(线性合并提交历史)直接在master分支执行git merge br_feature,再 执行 git pull --reba…...

WPF 相比 winform 的优势

wpf 相比 winform 的一些优点,网上也是众说纷纭,总的来说包括下面几点: 丰富的视觉效果:能够创建更具吸引力和现代化的用户界面,支持更复杂的图形和动画效果。不需要像 winform 一样,稍微做一点效果&#x…...