当前位置: 首页 > news >正文

锂电池SOH预测 | 基于BiGRU双向门控循环单元的锂电池SOH预测,附锂电池最新文章汇集

锂电池SOH预测 | 基于BiGRU双向门控循环单元的锂电池SOH预测,附锂电池最新文章汇集

目录

    • 锂电池SOH预测 | 基于BiGRU双向门控循环单元的锂电池SOH预测,附锂电池最新文章汇集
      • 预测效果
      • 基本描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

基本描述

锂电池SOH预测 | 基于BiGRU双向门控循环单元的锂电池SOH预测

BiGRU(双向门控循环单元)在锂电池SOH(健康状态)预测中的应用,主要是基于其处理时序数据的强大能力。
一、BiGRU双向门控循环单元介绍
Bigru双向门控循环单元是一种新型的神经网络结构,由双向循环神经网络(Bidirectional Recurrent Neural Network,简称BiGRU)和门控循环单元(Gated Recurrent Unit,简称GRU)组合而成。它能够在处理时序数据时更好地捕捉长期依赖关系,具有较强的记忆能力和良好的稳定性,被广泛运用于自然语言处理、语音识别、视频分析等领域。
结构:Bigru双向门控循环单元的结构由两部分组成,分别是双向循环神经网络和门控循环单元。双向循环神经网络采用前向和后向两个方向来学习时序数据的特征,能够更全面地获取上下文信息;门控循环单元则通过门控机制来控制信息的输入输出,有效地减少了梯度消失和梯度爆炸问题,提高了网络的训练效率和性能。

工作原理:Bigru双向门控循环单元的工作原理是通过双向循环神经网络和门控循环单元的协同作用来实现的。双向循环神经网络通过正向和反向两个方向来学习时序数据的特征,分别得到正向和反向的隐藏状态表示;门控循环单元根据这两个隐藏状态进行信息的整合和筛选,得到最终的表示结果。这样的结构能够更好地捕捉时序数据中的长期依赖关系,提高了模型的性能和泛化能力。

二、锂电池SOH预测
锂电池的SOH是其性能的重要指标,对于电动汽车和储能系统等领域具有重要意义。BiGRU双向门控循环单元在锂电池SOH预测中的应用,主要是通过以下步骤实现的:
数据预处理:首先,需要从锂电池的充放电曲线中提取出能够表征电池容量衰减的健康因子,如电压参数。然后,通过特征提取和数据标准化等步骤,为锂电池SOH估计提供可靠的数据基础。

模型构建:基于提取的特征数据,构建BiGRU双向门控循环单元模型。

模型训练与优化:采用合适的优化算法(如Adam等)对BiGRU模型进行训练,通过调整模型参数来最小化预测误差。

SOH预测:经过训练后的BiGRU模型可以用于锂电池SOH的预测。将新的特征数据输入到模型中,即可得到预测的SOH值。通过与实际值进行对比分析,可以评估模型的预测精度和可靠性。

Matlab代码,运行环境要求MATLAB版本为2023b及其以上

在这里插入图片描述

往期回顾
截至目前,锂电池预测相关文章已发多篇,汇集如下:
锂电池SOC估计
锂电池SOC估计 | Matlab基于BP神经网络的锂电池锂电池SOC估计
锂电池SOC估计 | Matlab基于LSTM神经网络的锂电池锂电池SOC估计(待)
锂电池SOC估计 | Matlab基于CNN神经网络的锂电池锂电池SOC估计(待)
高创新 | PyTorch基于改进Informer模型的锂电池SOC估计
锂电池寿命预测
锂电池剩余寿命预测 | Matlab基于CNN-LSTM的锂电池剩余寿命预测(待)
锂电池剩余寿命预测 | Matlab基于Transformer-BiGRU的锂电池剩余寿命预测
电池预测 | 第13讲 基于LSTM-Attention的锂电池剩余寿命预测
电池预测 | 第12讲 基于Transformer-GRU的锂电池剩余寿命预测
电池预测 | 第11讲 基于Transformer-BiLSTM的锂电池剩余寿命预测
电池预测 | 第10讲 基于Transformer-LSTM的锂电池剩余寿命预测
电池预测 | 第9讲 基于Transformer的锂电池剩余寿命预测
电池预测 | 第8讲 基于ARIMA的锂电池剩余寿命预测
电池预测 | 第7讲 基于SSA-SVR麻雀算法优化支持向量回归的锂离子电池剩余寿命预测
电池预测 | 第6讲 基于ALO-SVR蚁狮优化支持向量回归的锂离子电池剩余寿命预测
电池预测 | 第5讲 基于BiGRU锂电池剩余寿命预测
电池预测 | 第4讲 基于GRU锂电池剩余寿命预测
电池预测 | 第3讲 基于BiLSTM锂电池剩余寿命预测
电池预测 | 第2讲 基于LSTM锂电池剩余寿命预测
电池预测 | 第1讲 基于机器学习的锂电池寿命预测

程序设计

  • 完整程序和数据获取方式资源处下载私信回复Matlab基于BIGRU神经网络的锂电池SOH预测。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行% 数据导入
load('B0005.mat')
% 提取电池 B0005 数据集中与充电、放电循环和每个循环的容量相对应的电压测量值。
[B5_d, B5_c, C_B05] = hExtractChargeDischargeCycles(B0005);
%要查看电池充电、放电性能在各个周期内的下降情况,请绘制充电周期的电压与周期数。
%曲线的分布表明,随着电池老化,从开始充电到 4.2 V 所需的时间增加。同样,电池放电所需的时间减少。
num_partial_cycles = 163;
figure; tiledlayout(2,1)
nexttile;
hold on
for i = 1:num_partial_cycles-1
plot(B5_c(i).t,B5_c(i).measuredV)
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关文章:

锂电池SOH预测 | 基于BiGRU双向门控循环单元的锂电池SOH预测,附锂电池最新文章汇集

锂电池SOH预测 | 基于BiGRU双向门控循环单元的锂电池SOH预测,附锂电池最新文章汇集 目录 锂电池SOH预测 | 基于BiGRU双向门控循环单元的锂电池SOH预测,附锂电池最新文章汇集预测效果基本描述程序设计参考资料 预测效果 基本描述 锂电池SOH预测 | 基于Bi…...

半导体器件与物理篇5 1~4章课后习题

热平衡时的能带和载流子浓度 例 一硅晶掺入每立方厘米10^{16}个砷原子,求室温下(300K)的载流子浓度与费米能级。 需要用到的公式包括1.本征载流子浓度公式 2.从导带底算起的本征费米能级 2.从本征费米能级算起的费米能级 载流子输运现象 例1:计算在300K下&#x…...

Pytest-Bdd-Playwright 系列教程(16):标准化JSON报告Gherkin格式命令行报告

Pytest-Bdd-Playwright 系列教程(16):标准化JSON报告&Gherkin格式命令行报告 前言一、创建Feature文件二、创建步骤定义文件三、生成Cucumber格式的JSON报告四、使用Gherkin格式的命令行报告五、将BDD报告集成到Jenkins中总结 前言 在自动…...

机器学习之学习范式

机器学习的四种主要范式分别是:监督学习、非监督学习、强化学习和半监督学习。以下是每种范式的详细介绍: 1. 监督学习(Supervised Learning) 定义: 通过已标注的数据训练模型,以预测或分类未知数据。 目…...

PHPstudy中的数据库启动不了

法一 netstat -ano |findstr "3306" 查看占用该端口的进程号 taskkill /f /pid 6720 杀死进程 法二 sc delete mysql...

鸿蒙开发-ArkTS 创建自定义组件

在 ArkTS 中创建自定义组件是一个相对简单但功能强大的过程。以下是如何在 ArkTS 中创建和使用自定义组件的详细步骤: 一、定义自定义组件 使用Component注解:为了注册一个组件,使其能够在其他文件中被引用,你需要使用Component…...

记录学习《手动学习深度学习》这本书的笔记(五)

这一章是循环神经网络,太难了太难了,有很多卡壳的地方理解了好久,比如隐藏层和隐状态的区别、代码的含义(为此专门另写了一篇【笔记】记录对自主实现一个神经网络的步骤的理解)、梯度计算相关(【笔记】记录…...

【Qt】Qt+Visual Studio 2022环境开发

在使用Qt Creator的过程中,项目一大就会卡,所以我一般都是用VS开发Cmake开发, 在上一篇文章中,我已经安装了CMake,如果你没有安装就自己按一下。 记得配置Qt环境变量,不然CMake无法生成VS项目&#xff1a…...

云计算HCIP-OpenStack04

书接上回: 云计算HCIP-OpenStack03-CSDN博客 12.Nova计算管理 Nova作为OpenStack的核心服务,最重要的功能就是提供对于计算资源的管理。 计算资源的管理就包含了已封装的资源和未封装的资源。已封装的资源就包含了虚拟机、容器。未封装的资源就是物理机提…...

HCIA-Access V2.5_3_2_VLAN数据转发

802.1Q的转发原则--Access-Link 首先看一下Access,对于Access端口来说, 它只属于一个VLAN,它的VLANID等于PVID。 首先看一下接收方向,前面说过交换机内部一定要带标签转发,所以当交换机接收到一个不带tag的数据帧时,会给它打上端…...

transformer学习笔记-导航

本系列专栏,主要是对transformer的基本原理做简要笔记,目前也是主要针对个人比较感兴趣的部分,包括:神经网络基本原理、词嵌入embedding、自注意力机制、多头注意力、位置编码、RoPE旋转位置编码等部分。transformer涉及的知识体系…...

功能篇:JAVA后端实现跨域配置

在Java后端实现跨域配置(CORS,Cross-Origin Resource Sharing)有多种方法,具体取决于你使用的框架。如果你使用的是Spring Boot或Spring MVC,可以通过以下几种方式来配置CORS。 ### 方法一:全局配置 对于所…...

防火墙内局域网特殊的Nginx基于stream模块进行四层协议转发模块的监听443 端口并将所有接收转发到目标服务器

在一些特殊场合下, 公司内部网络防火墙限制, 不能做端口映射, 此时可以使用nginx的做从四层协议转发, 只走tcp/ip协议, 而不走http方式, 可以做waf设置, 就可以做443, 或其它端口, 从而达到被直接转发到远程服务器效果 机房只映射了一个IP:22280, 而需求是这个SDK只能通过…...

【Hive】-- hive 3.1.3 伪分布式部署(单节点)

1、环境准备 1.1、版本选择 apache hive 3.1.3 apache hadoop 3.1.0 oracle jdk 1.8 mysql 8.0.15 操作系统:Mac os 10.151.2、软件下载 https://archive.apache.org/dist/hive/ https://archive.apache.org/dist/hadoop/ 1.3、解压 tar -zxvf apache-hive-4.0.0-bin.tar…...

C++ STL 队列queue详细使用教程

序言 我们平常写广搜什么&#xff0c;上来就是一句 queue<XXX> qu; 说明队列时很重要的。 STL库中的queue把队列的各种操作封装成一个类&#xff0c;非常方便&#xff0c;信奥中使用它也是很有优势的。 目录 一、队列的定义 二、创建队列对象 三、队列的初始化 四、常…...

【前端】JavaScript 中的 filter() 方法的理论与实践深度解析

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: 前端 文章目录 &#x1f4af;前言&#x1f4af;filter() 方法的概念与原理1. 什么是 filter()&#xff1f;2. 基本工作原理3. 方法特点4. 用法格式参数解析 &#x1f4af;代码案例详解示例&#xff1a;筛选有效数字并…...

【机器学习算法】——决策树之集成学习:Bagging、Adaboost、Xgboost、RandomForest、XGBoost

集成学习 **集成学习(Ensemble learning)**是机器学习中近年来的一大热门领域。其中的集成方法是用多种学习方法的组合来获取比原方法更优的结果。 使用于组合的算法是弱学习算法&#xff0c;即分类正确率仅比随机猜测略高的学习算法&#xff0c;但是组合之后的效果仍可能高于…...

JVM运行时数据区内部结构

VM内部结构 对于jvm来说他的内部结构主要分成三个部分&#xff0c;分别是类加载阶段&#xff0c;运行时数据区&#xff0c;以及垃圾回收区域&#xff0c;类加载我们放到之后来总结&#xff0c;今天先复习一下类运行区域 首先这个区域主要是分成如下几个部分 下面举个例子来解释…...

Navicat for MySQL 查主键、表字段类型、索引

针对Navicat 版本11 &#xff0c;不同版本查询方式可能不同 1、主键查询 &#xff08;重点找DDL&#xff01;&#xff01;&#xff01;&#xff09; 方法&#xff08;1&#xff09; &#xff1a;右键 - 对象信息 - 选择要查的表 - DDL - PRIMARY KEY 方法&#xff08;2&…...

如何在谷歌浏览器中实现自定义主题

在数字化时代&#xff0c;个性化设置已成为提升用户体验的重要一环。对于广泛使用的谷歌浏览器而言&#xff0c;改变默认的浏览器主题不仅能够美化界面&#xff0c;还能在一定程度上提升使用效率和愉悦感。本文将详细介绍如何在谷歌浏览器中实现自定义主题&#xff0c;包括从官…...

visual studio 2022 c++使用教程

介绍 c开发windows一般都是visual studio&#xff0c;linux一般是vscode&#xff0c;但vscode调试c不方便&#xff0c;所以很多情况都是2套代码&#xff0c;在windows上用vs开发方便&#xff0c;在转到linux。 安装 1、官网下载vs2022企业版–选择桌面开发–安装位置–安装–…...

曝光三要素

一光圈 光圈越大&#xff0c;数值越小&#xff0c;画面越亮&#xff0c;背景越模糊 光圈越小&#xff0c;数值越大&#xff0c;画面越暗&#xff0c;背景越清晰 二 快门 快门最主要的作用是控制曝光时间的长短 快门速度的单位是秒&#xff0c;一般用 1秒&#xff0c;1/8秒&am…...

01-2 :PyCharm安装配置教程(图文结合-超详细)

一、PyCharm安装 PyCharm集成开发工具&#xff08;IDE&#xff09;&#xff0c;是当下全球Python开发者&#xff0c;使用最频繁的工具软件。 绝大多数的Python程序&#xff0c;都是在PyCharm工具内完成的开发。 本篇文章基于PyCharm软件工具进行描述&#xff0c;教你如何安装…...

类OCSP靶场-Kioptrix系列-Kioptrix Level 1

一、前情提要 二、实战打靶 1. 信息收集 1.1. 主机发现 1.2. 端口扫描 1.3 目录爆破 1.4. 敏感信息 2.根据服务搜索漏洞 2.1. 搜索exp 2.2. 编译exp 2.3. 查看exp使用方法&#xff0c;并利用 3. 提权 二、第二种方法 一、前情提要 Kioptrix Level是免费靶场&#x…...

Maven插件打包发布远程Docker镜像

dockerfile-maven-plugin插件的介绍 dockerfile-maven-plugin目前这款插件非常成熟&#xff0c;它集成了Maven和Docker&#xff0c;该插件的官方文档地址如下&#xff1a; 地址&#xff1a;https://github.com/spotify/dockerfile-maven 其他说明&#xff1a; dockerfile是用…...

VisualStudio vsix插件自动加载

本文介绍如何在Visual Studio扩展中实现PackageRegistration&#xff0c;包括设置UseManagedResourcesOnly为true&#xff0c;允许背景加载&#xff0c;并针对C#、VB、F#项目提供自动装载&#xff0c;附官方文档链接。增加以下特性即可…… [PackageRegistration(UseManagedRe…...

Codesoft许可管理

在数字化时代&#xff0c;软件许可管理对于确保企业资产安全、优化成本和提高工作效率至关重要。Codesoft作为一款功能强大的标签设计软件&#xff0c;其许可管理功能同样出色。本文将为您介绍如何进行Codesoft的许可管理&#xff0c;确保您的软件投资得到最大回报。 一、了解…...

Unity3D 3D模型/动画数据压缩详解

前言 在Unity3D项目中&#xff0c;3D模型和动画数据通常占用大量内存和存储空间&#xff0c;有效的数据压缩技术对于提升游戏性能和加载速度至关重要。本文将详细介绍Unity3D中3D模型和动画数据的压缩技术&#xff0c;并提供相关的代码实现。 对惹&#xff0c;这里有一个游戏…...

ffmpeg和ffplay命令行实战手册

文章目录 视频拼接用concat视频分段拼接(ffplay 不可调用seek函数进行seek)给视频添加黑边&#xff0c;让视频填充并居中显示不同分辨率视频分段拼接&#xff0c;并且&#xff0c;设置单个视频的缩放比例和摆放位置视频画中画复杂嵌套用overlay(ffplay 可调用seek函数进行seek)…...

基于MobileNet v2模型的口罩实时检测系统实现

基于kaggle数据集训练的模型其实现结果如下&#xff1a; 代码结构如下&#xff1a; 实时口罩检测器&#xff1a; 从导航栏中的链接“实时的口罩检测器”功能&#xff0c;该系统包含一个实时检测用户是否佩戴口罩的功能。基于图片的口罩检测器&#xff1a; 从另一个导航链接“基…...