当前位置: 首页 > news >正文

【C++】CUDA线程在全局索引中的计算方式

文章目录

  • 1. 一维网格一维线程块
  • 2. 二维网格二维线程块
  • 3. 三维网格三维线程块
  • 4. 不同组合形式
    • 4.1 一维网格一维线程块
    • 4.2 一维网格二维线程块
    • 4.3 一维网格三维线程块
    • 4.4 二维网格一维线程块
    • 4.5 二维网格二维线程块
    • 4.6 二维网格三维线程块
    • 4.7 三维网格一维线程块
    • 4.8 三维网格二维线程块
    • 4.9 三维网格三维线程块

1. 一维网格一维线程块

定义grid与block尺寸:

dim3 grid_size(4);
dim3 block_size(8);

调用核函数:

kernal_fun<<<grid_size, block_size>>>(...);

具体索引方式如下图所示, b l o c k I d x . x blockIdx.x blockIdx.x 从0~3, t h r e a d I d x . x threadIdx.x threadIdx.x 从0~7

在这里插入图片描述

计算方式:

i n t i d = b l o c k I d x . x ∗ b l o c k D i m . x + t h r e a d I d x . x int \ id = blockIdx.x * blockDim.x + threadIdx.x int id=blockIdx.xblockDim.x+threadIdx.x

2. 二维网格二维线程块

定义grid与block尺寸

dim3 grid_size(2,2);
dim3 block_size(4,4);

调用核函数:

kernal_fun<<<grid_size, block_size>>>(...);

具体线程索引方式如下图所示, b l o c k I d x . x blockIdx.x blockIdx.x b l o c k I d x . y blockIdx.y blockIdx.y 从0到1, t h r e a d I d x . x threadIdx.x threadIdx.x t h r e a d I d x . y threadIdx.y threadIdx.y从0到3:

在这里插入图片描述
计算方式:
i n t b l o c k I d = b l o c k I d x . x + b l o c k I d . y ∗ g i r d D i m . x i n t t h r e a d I d = t h r e a d I d x . y ∗ b l o c k D i m . x + t h r e a d I d x . x i n t i d = b l o c k I d ∗ ( b l o c k D i m . x ∗ b l o c k D i m . y ) + t h r e a d I d \begin{align*} &int \ blockId = blockIdx.x + blockId.y*girdDim.x \\ &int \ threadId = threadIdx.y * blockDim.x + threadIdx.x \\ &int \ id = blockId*(blockDim.x*blockDim.y) + threadId \end{align*} int blockId=blockIdx.x+blockId.ygirdDim.xint threadId=threadIdx.yblockDim.x+threadIdx.xint id=blockId(blockDim.xblockDim.y)+threadId

3. 三维网格三维线程块

定义grid和block尺寸:

dim3 grid_size(2,2,2);
dim3 block_size(4,4,2);

调用核函数:

kernal_fun<<<grid_size, block_size>>>(...);

具体线程索引方式如图所示:

在这里插入图片描述

  • b l o c k I d x . x blockIdx.x blockIdx.x 从0到1
  • b l o c k I d x . y blockIdx.y blockIdx.y 从0到1
  • b l o c k I d x . z blockIdx.z blockIdx.z 从0到1
  • t h r e a d I d x . x threadIdx.x threadIdx.x 从0到3
  • t h r e a d I d x . y threadIdx.y threadIdx.y 从0到3
  • t h r e a d I d x . z threadIdx.z threadIdx.z 从0到1

计算方式:
i n t b l o c k I d = b l o c k I d x . x + b l o c k I d x . y ∗ g i r d D i m . x + g r i d D i m . x ∗ g r i d D i m . y ∗ b l o c k I d x . z i n t t h r e a d I d = t h r e a d I d x . z ∗ b l o c k D i m . x ∗ b l o c k D i m . y + t h r e a d I d x . y ∗ b l o c k D i m . x + t h r e a d I d x . x i n t i d = b l o c k I d ∗ ( b l o c k D i m . x ∗ b l o c k D i m . y ∗ b l o c k D i m . z ) + t h r e a d I d \begin{align*} &int \ blockId = blockIdx.x + blockIdx.y*girdDim.x + gridDim.x * gridDim.y*blockIdx.z \\ &int \ threadId = threadIdx.z * blockDim.x * blockDim.y+ threadIdx.y * blockDim.x + threadIdx.x \\ &int \ id = blockId*(blockDim.x*blockDim.y*blockDim.z) + threadId \end{align*} int blockId=blockIdx.x+blockIdx.ygirdDim.x+gridDim.xgridDim.yblockIdx.zint threadId=threadIdx.zblockDim.xblockDim.y+threadIdx.yblockDim.x+threadIdx.xint id=blockId(blockDim.xblockDim.yblockDim.z)+threadId

4. 不同组合形式

4.1 一维网格一维线程块

i n t b l o c k I d = b l o c k I d x . x i n t i d = b l o c k I d x . x ∗ b l o c k D i m . x + t h r e a d I d x . x \begin{align*} &int \ blockId = blockIdx.x \\ &int \ id = blockIdx.x*blockDim.x + threadIdx.x \end{align*} int blockId=blockIdx.xint id=blockIdx.xblockDim.x+threadIdx.x

4.2 一维网格二维线程块

i n t b l o c k I d = b l o c k I d x . x i n t i d = b l o c k I d x . x ∗ b l o c k D i m . x ∗ b l o c k D i m . y + t h r e a d I d x . y ∗ b l o c k D i m . x + t h r e a d I d x . x \begin{align*} &int \ blockId = blockIdx.x \\ &int \ id = blockIdx.x*blockDim.x*blockDim.y + threadIdx.y*blockDim.x + threadIdx.x \end{align*} int blockId=blockIdx.xint id=blockIdx.xblockDim.xblockDim.y+threadIdx.yblockDim.x+threadIdx.x

4.3 一维网格三维线程块

i n t b l o c k I d = b l o c k I d x . x i n t i d = b l o c k I d x . x ∗ b l o c k D i m . x ∗ b l o c k D i m . y ∗ b l o c k D i m . z + t h r e a d I d x . z ∗ b l o c k D i m . y ∗ b l o c k D i m . x + t h r e a d I d x . y ∗ b l o c k D i m . x + t h r e a d I d x . x int \ blockId = blockIdx.x \\ int \ id = blockIdx.x*blockDim.x*blockDim.y*blockDim.z +threadIdx.z*blockDim.y*blockDim.x +threadIdx.y*blockDim.x+threadIdx.x int blockId=blockIdx.xint id=blockIdx.xblockDim.xblockDim.yblockDim.z+threadIdx.zblockDim.yblockDim.x+threadIdx.yblockDim.x+threadIdx.x

4.4 二维网格一维线程块


i n t b l o c k I d = b l o c k I d x . x + b l o c k I d x . y ∗ g r i d D i m . x i n t i d = b l o c k I d ∗ b l o c k D i m . x + t h r e a d I d x . x ​ int \ blockId=blockIdx.x+blockIdx.y∗gridDim.x \\ int \ id=blockId∗blockDim.x+threadIdx.x ​ int blockId=blockIdx.x+blockIdx.ygridDim.xint id=blockIdblockDim.x+threadIdx.x

4.5 二维网格二维线程块

i n t b l o c k I d = b l o c k I d x . x + b l o c k I d x . y ∗ g r i d D i m . x i n t i d = b l o c k I d ∗ b l o c k D i m . x ∗ b l o c k D i m . y + t h r e a d I d x . y ∗ b l o c k D i m . x + t h r e a d I d x . x int \ blockId=blockIdx.x+blockIdx.y∗gridDim.x \\ int \ id=blockId∗blockDim.x∗blockDim.y+threadIdx.y∗blockDim.x+threadIdx.x int blockId=blockIdx.x+blockIdx.ygridDim.xint id=blockIdblockDim.xblockDim.y+threadIdx.yblockDim.x+threadIdx.x

4.6 二维网格三维线程块

i n t b l o c k I d = b l o c k I d x . x + b l o c k I d x . y ∗ g r i d D i m . x i n t i d = b l o c k I d ∗ b l o c k D i m . x ∗ b l o c k D i m . y ∗ b l o c k D i m . z + t h r e a d I d x . z ∗ b l o c k D i m . x ∗ b l o c k D i m . y + t h r e a d I d x . y ∗ b l o c k D i m . x + t h r e a d I d x . x int \ blockId=blockIdx.x+blockIdx.y∗gridDim.x \\ int \ id=blockId∗blockDim.x∗blockDim.y∗blockDim.z+threadIdx.z∗blockDim.x∗blockDim.y+threadIdx.y∗blockDim.x+threadIdx.x int blockId=blockIdx.x+blockIdx.ygridDim.xint id=blockIdblockDim.xblockDim.yblockDim.z+threadIdx.zblockDim.xblockDim.y+threadIdx.yblockDim.x+threadIdx.x

4.7 三维网格一维线程块

i n t b l o c k I d = b l o c k I d x . x + b l o c k I d x . y ∗ g r i d D i m . x + b l o c k I d x . z ∗ g r i d D i m . x ∗ g r i d D i m . y i n t i d = b l o c k I d ∗ b l o c k D i m . x + t h r e a d I d x . x int \ blockId=blockIdx.x+blockIdx.y∗gridDim.x+blockIdx.z∗gridDim.x∗gridDim.y\\ int \ id=blockId∗blockDim.x+threadIdx.x int blockId=blockIdx.x+blockIdx.ygridDim.x+blockIdx.zgridDim.xgridDim.yint id=blockIdblockDim.x+threadIdx.x

4.8 三维网格二维线程块

i n t b l o c k I d = b l o c k I d x . x + b l o c k I d x . y ∗ g r i d D i m . x + b l o c k I d x . z ∗ g r i d D i m . x ∗ g r i d D i m . y i n t i d = b l o c k I d ∗ b l o c k D i m . x ∗ b l o c k D i m . y + t h r e a d I d x . y ∗ b l o c k D i m . x + t h r e a d I d x . x int \ blockId=blockIdx.x+blockIdx.y∗gridDim.x+blockIdx.z∗gridDim.x∗gridDim.y \\ int \ id=blockId∗blockDim.x∗blockDim.y+threadIdx.y∗blockDim.x+threadIdx.x int blockId=blockIdx.x+blockIdx.ygridDim.x+blockIdx.zgridDim.xgridDim.yint id=blockIdblockDim.xblockDim.y+threadIdx.yblockDim.x+threadIdx.x

4.9 三维网格三维线程块

i n t b l o c k I d = b l o c k I d x . x + b l o c k I d x . y ∗ g r i d D i m . x + b l o c k I d x . z ∗ g r i d D i m . x ∗ g r i d D i m . y i n t i d = b l o c k I d ∗ b l o c k D i m . x ∗ b l o c k D i m . y ∗ b l o c k D i m . z + t h r e a d I d x . z ∗ b l o c k D i m . x ∗ b l o c k D i m . y + t h r e a d I d x . y ∗ b l o c k D i m . x + t h r e a d I d x . x int \ blockId=blockIdx.x+blockIdx.y∗gridDim.x+blockIdx.z∗gridDim.x∗gridDim.y \\ int \ id=blockId∗blockDim.x∗blockDim.y∗blockDim.z+threadIdx.z∗blockDim.x∗blockDim.y+threadIdx.y∗blockDim.x+threadIdx.x int blockId=blockIdx.x+blockIdx.ygridDim.x+blockIdx.zgridDim.xgridDim.yint id=blockIdblockDim.xblockDim.yblockDim.z+threadIdx.zblockDim.xblockDim.y+threadIdx.yblockDim.x+threadIdx.x

相关文章:

【C++】CUDA线程在全局索引中的计算方式

文章目录 1. 一维网格一维线程块2. 二维网格二维线程块3. 三维网格三维线程块4. 不同组合形式4.1 一维网格一维线程块4.2 一维网格二维线程块4.3 一维网格三维线程块4.4 二维网格一维线程块4.5 二维网格二维线程块4.6 二维网格三维线程块4.7 三维网格一维线程块4.8 三维网格二维…...

【笔记】C语言转C++

网课链接&#xff1a;【C语言 转 C 简单教程】 https://www.bilibili.com/video/BV1UE411j7Ti/?p27&share_sourcecopy_web&vd_source4abe1433c2a7ef632aeed6a3d5c0b22a 网课老师B站id:别喷我id 视频总时长&#xff1a;01:55:27 以下笔记是我通过此网课整理 建议先…...

锂电池SOH预测 | 基于BiGRU双向门控循环单元的锂电池SOH预测,附锂电池最新文章汇集

锂电池SOH预测 | 基于BiGRU双向门控循环单元的锂电池SOH预测&#xff0c;附锂电池最新文章汇集 目录 锂电池SOH预测 | 基于BiGRU双向门控循环单元的锂电池SOH预测&#xff0c;附锂电池最新文章汇集预测效果基本描述程序设计参考资料 预测效果 基本描述 锂电池SOH预测 | 基于Bi…...

半导体器件与物理篇5 1~4章课后习题

热平衡时的能带和载流子浓度 例 一硅晶掺入每立方厘米10^{16}个砷原子&#xff0c;求室温下(300K)的载流子浓度与费米能级。 需要用到的公式包括1.本征载流子浓度公式 2.从导带底算起的本征费米能级 2.从本征费米能级算起的费米能级 载流子输运现象 例1:计算在300K下&#x…...

Pytest-Bdd-Playwright 系列教程(16):标准化JSON报告Gherkin格式命令行报告

Pytest-Bdd-Playwright 系列教程&#xff08;16&#xff09;&#xff1a;标准化JSON报告&Gherkin格式命令行报告 前言一、创建Feature文件二、创建步骤定义文件三、生成Cucumber格式的JSON报告四、使用Gherkin格式的命令行报告五、将BDD报告集成到Jenkins中总结 前言 在自动…...

机器学习之学习范式

机器学习的四种主要范式分别是&#xff1a;监督学习、非监督学习、强化学习和半监督学习。以下是每种范式的详细介绍&#xff1a; 1. 监督学习&#xff08;Supervised Learning&#xff09; 定义&#xff1a; 通过已标注的数据训练模型&#xff0c;以预测或分类未知数据。 目…...

PHPstudy中的数据库启动不了

法一 netstat -ano |findstr "3306" 查看占用该端口的进程号 taskkill /f /pid 6720 杀死进程 法二 sc delete mysql...

鸿蒙开发-ArkTS 创建自定义组件

在 ArkTS 中创建自定义组件是一个相对简单但功能强大的过程。以下是如何在 ArkTS 中创建和使用自定义组件的详细步骤&#xff1a; 一、定义自定义组件 使用Component注解&#xff1a;为了注册一个组件&#xff0c;使其能够在其他文件中被引用&#xff0c;你需要使用Component…...

记录学习《手动学习深度学习》这本书的笔记(五)

这一章是循环神经网络&#xff0c;太难了太难了&#xff0c;有很多卡壳的地方理解了好久&#xff0c;比如隐藏层和隐状态的区别、代码的含义&#xff08;为此专门另写了一篇【笔记】记录对自主实现一个神经网络的步骤的理解&#xff09;、梯度计算相关&#xff08;【笔记】记录…...

【Qt】Qt+Visual Studio 2022环境开发

在使用Qt Creator的过程中&#xff0c;项目一大就会卡&#xff0c;所以我一般都是用VS开发Cmake开发&#xff0c; 在上一篇文章中&#xff0c;我已经安装了CMake&#xff0c;如果你没有安装就自己按一下。 记得配置Qt环境变量&#xff0c;不然CMake无法生成VS项目&#xff1a…...

云计算HCIP-OpenStack04

书接上回&#xff1a; 云计算HCIP-OpenStack03-CSDN博客 12.Nova计算管理 Nova作为OpenStack的核心服务&#xff0c;最重要的功能就是提供对于计算资源的管理。 计算资源的管理就包含了已封装的资源和未封装的资源。已封装的资源就包含了虚拟机、容器。未封装的资源就是物理机提…...

HCIA-Access V2.5_3_2_VLAN数据转发

802.1Q的转发原则--Access-Link 首先看一下Access,对于Access端口来说&#xff0c; 它只属于一个VLAN,它的VLANID等于PVID。 首先看一下接收方向&#xff0c;前面说过交换机内部一定要带标签转发&#xff0c;所以当交换机接收到一个不带tag的数据帧时&#xff0c;会给它打上端…...

transformer学习笔记-导航

本系列专栏&#xff0c;主要是对transformer的基本原理做简要笔记&#xff0c;目前也是主要针对个人比较感兴趣的部分&#xff0c;包括&#xff1a;神经网络基本原理、词嵌入embedding、自注意力机制、多头注意力、位置编码、RoPE旋转位置编码等部分。transformer涉及的知识体系…...

功能篇:JAVA后端实现跨域配置

在Java后端实现跨域配置&#xff08;CORS&#xff0c;Cross-Origin Resource Sharing&#xff09;有多种方法&#xff0c;具体取决于你使用的框架。如果你使用的是Spring Boot或Spring MVC&#xff0c;可以通过以下几种方式来配置CORS。 ### 方法一&#xff1a;全局配置 对于所…...

防火墙内局域网特殊的Nginx基于stream模块进行四层协议转发模块的监听443 端口并将所有接收转发到目标服务器

在一些特殊场合下, 公司内部网络防火墙限制, 不能做端口映射, 此时可以使用nginx的做从四层协议转发, 只走tcp/ip协议, 而不走http方式, 可以做waf设置, 就可以做443, 或其它端口, 从而达到被直接转发到远程服务器效果 机房只映射了一个IP:22280, 而需求是这个SDK只能通过…...

【Hive】-- hive 3.1.3 伪分布式部署(单节点)

1、环境准备 1.1、版本选择 apache hive 3.1.3 apache hadoop 3.1.0 oracle jdk 1.8 mysql 8.0.15 操作系统:Mac os 10.151.2、软件下载 https://archive.apache.org/dist/hive/ https://archive.apache.org/dist/hadoop/ 1.3、解压 tar -zxvf apache-hive-4.0.0-bin.tar…...

C++ STL 队列queue详细使用教程

序言 我们平常写广搜什么&#xff0c;上来就是一句 queue<XXX> qu; 说明队列时很重要的。 STL库中的queue把队列的各种操作封装成一个类&#xff0c;非常方便&#xff0c;信奥中使用它也是很有优势的。 目录 一、队列的定义 二、创建队列对象 三、队列的初始化 四、常…...

【前端】JavaScript 中的 filter() 方法的理论与实践深度解析

博客主页&#xff1a; [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: 前端 文章目录 &#x1f4af;前言&#x1f4af;filter() 方法的概念与原理1. 什么是 filter()&#xff1f;2. 基本工作原理3. 方法特点4. 用法格式参数解析 &#x1f4af;代码案例详解示例&#xff1a;筛选有效数字并…...

【机器学习算法】——决策树之集成学习:Bagging、Adaboost、Xgboost、RandomForest、XGBoost

集成学习 **集成学习(Ensemble learning)**是机器学习中近年来的一大热门领域。其中的集成方法是用多种学习方法的组合来获取比原方法更优的结果。 使用于组合的算法是弱学习算法&#xff0c;即分类正确率仅比随机猜测略高的学习算法&#xff0c;但是组合之后的效果仍可能高于…...

JVM运行时数据区内部结构

VM内部结构 对于jvm来说他的内部结构主要分成三个部分&#xff0c;分别是类加载阶段&#xff0c;运行时数据区&#xff0c;以及垃圾回收区域&#xff0c;类加载我们放到之后来总结&#xff0c;今天先复习一下类运行区域 首先这个区域主要是分成如下几个部分 下面举个例子来解释…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

【Java_EE】Spring MVC

目录 Spring Web MVC ​编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 ​编辑参数重命名 RequestParam ​编辑​编辑传递集合 RequestParam 传递JSON数据 ​编辑RequestBody ​…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

【Redis】笔记|第8节|大厂高并发缓存架构实战与优化

缓存架构 代码结构 代码详情 功能点&#xff1a; 多级缓存&#xff0c;先查本地缓存&#xff0c;再查Redis&#xff0c;最后才查数据库热点数据重建逻辑使用分布式锁&#xff0c;二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG

TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码&#xff1a;HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...