当前位置: 首页 > news >正文

HCIA-Access V2.5_4_1_1路由协议基础_IP路由表

大型网络的拓扑结构一般会比较复杂,不同的部门,或者总部和分支可能处在不同的网络中,此时就需要使用路由器来连接不同的网络,实现网络之间的数据转发。

本章将介绍路由协议的基础知识、路由表的分类、静态路由基础与配置、VLAN间路由的原理。

你可以带着这些问题来学习:

什么是路由?如何配置静态路由?

目标

学完本课程后,你将能够:

  • 了解路由协议的基础知识;
  • 了解路由的分类;
  • 掌握静态路由基础与配置;
  • 掌握VLAN间路由的原理

在大型网络中,一般会配置动态路由协议,而接入网通常是部署在网络边缘,一般只只需要配置静态路由。

什么是路由?

什么是路由呢? 路由就是指导IP报文发送的路径信息,指导IP报文如何从源端转发到目的地,如图,这个主机和这个主机想要远程通信,它可以通过上面这条路径转发到目的地,也可以通过中间这条链路发到目的地,也可以通过下面这条链路转发到目的地,那么路由器怎么走呢,这个时候就依靠路由表,路由器就会根据路由表来进行数据包的一个转发,同样,路由器也会根据自己的算法,选择一条它认为最优的路径,放在自己的IP路由表里面。

IP路由表

什么是路由表,它其实就是一张地图,告诉了我们如何去往目的地,那么里面具体包含了哪些参数,首先第一个就是目的地掩码,路由器收到报文之后就会查目的IP,看看有没有在我的路由表里面存在,如果存在就就可以进行转发,如果不存在,那么这个时候我就直接丢弃报文;第二个就是协议,这个就是路由的来源,这个路由条目可以是静态路由配置的,也可以是OSPF或者是RIP学习到的。它到底是通过哪一种路由协议学习到的,我们会在这边进行标识,第三个就是优先级,一般静态路由它的协议优先级是60,而RIP是100,OSPF是10,当然这个参数各个厂家是不一样的,这里说的是华为设备的优先级;第4个参数Cost值就是去往目的地需要的开销是多少,它会选择Cost值小的放在自己的路由表中;还有Flags,它会有两个参数,一个是R,一个是D,那么D代表它会把这条路由条目放入转发表中,按照这一条路由条目实现数据的一个转发,接着就是一下跳,那么就是去往目的地对端路由的接口地址;最后一个就是出接口,标识的你要去往目的地,应该从本地的哪一个接口转发出去,

路由的来源(Protocol)

最长匹配原则

路由优先级(Preference) 

路由的度量(Metric)

下一跳(NextHop) 和出接口(Interface)

相关文章:

HCIA-Access V2.5_4_1_1路由协议基础_IP路由表

大型网络的拓扑结构一般会比较复杂,不同的部门,或者总部和分支可能处在不同的网络中,此时就需要使用路由器来连接不同的网络,实现网络之间的数据转发。 本章将介绍路由协议的基础知识、路由表的分类、静态路由基础与配置、VLAN间…...

Spring IOC 和 AOP的学习笔记

Spring框架是java开发行业的标准 Spring全家桶 Web:Spring Web MVC/Spring MVC、Spring Web Flux 持久层:Spring Data / Spring Data JPA 、Spring Data Redis 、Spring Data MongoDB 安全校验:Spring Security 构建工程脚手架&#xff…...

二七(vue2-03)、生命周期四个阶段及八个钩子、工程化开发和脚手架、组件注册、拆分组件

1. 生命周期 1.1 生命周期四个阶段 <!-- Vue生命周期&#xff1a;一个Vue实例从 创建 到 销毁 的整个过程。生命周期四个阶段&#xff1a;① 创建 ② 挂载 ③ 更新 ④ 销毁1.创建阶段&#xff1a;创建响应式数据2.挂载阶段&#xff1a;渲染模板3.更新阶段&#xff1a;修改…...

[树] 最轻的天平

问题描述 天平的两边有时不一定只能挂物品&#xff0c;还可以继续挂着另一个天平&#xff0c;现在给你一些天平的情况和他们之间的连接关系&#xff0c;要求使得所有天平都能平衡所需物品的总重量最轻。 一个天平平衡当且仅当“左端点的重量 \times 左端点到支点的距离 …...

Linux udev介绍使用

udev udev配置文件匹配键和赋值键操作符解释示例修改udev配置U盘自动挂载Usb卸载SD卡挂载SD卡卸载 udev配置文件 /etc/udev/udev.conf 这个文件通常很短&#xff0c;他可能只是包含几行#开头的注释&#xff0c;然后有几行选项&#xff1a; udev_root“/dev/” udev_rules“/…...

单片机:实现节日彩灯(附带源码)

本项目的目标是通过编程实现几个常见的彩灯效果&#xff0c;包括&#xff1a; 流水灯效果&#xff08;从左到右或从右到左&#xff09;闪烁效果&#xff08;所有灯同时闪烁&#xff09;渐变效果&#xff08;灯光从亮到灭&#xff0c;再从灭到亮&#xff09;定时切换颜色效果&a…...

流程引擎Activiti性能优化方案

流程引擎Activiti性能优化方案 Activiti工作流引擎架构概述 Activiti工作流引擎架构大致分为6层。从上到下依次为工作流引擎层、部署层、业务接口层、命令拦截层、命令层和行为层。 基于关系型数据库层面优化 MySQL建表语句优化 Activiti在MySQL中创建默认字符集为utf8&…...

【爬虫一】python爬虫基础合集一

【爬虫一】python爬虫基础合集一 1. 网络请求了解1.1. 请求的类型1.2. 网络请求协议1.3. 网络请求过程简单图解1.4. 网络请求Headers(其中的关键字释义)&#xff1a;请求头、响应头 2. 网络爬虫的基本工作节点2.1. 了解简单网络请求获取响应数据的过程所涉及要点 1. 网络请求了…...

any/all 子查询优化规则的原理与解析 | OceanBase查询优化

背景 在通常情况下&#xff0c;当遇到包含any/all子查询的语句时&#xff0c;往往需要遵循嵌套执行的方式&#xff0c;因此其查询效率较低。Oceanbase中制定了相应的any/all子查询优化规则&#xff0c;能够能够识别并优化符合条件的any/all子查询&#xff0c;从而有效提升查询…...

ECharts 饼图:数据可视化的重要工具

ECharts 饼图:数据可视化的重要工具 引言 在数据分析和可视化的领域,ECharts 是一个广受欢迎的开源库。它由百度团队开发,用于在网页中创建交互式图表。ECharts 提供了多种图表类型,包括柱状图、折线图、散点图等,而饼图则是其中最常用的一种。本文将深入探讨 ECharts 饼…...

第10章:CSS最佳实践 --[CSS零基础入门]

代码组织 在CSS开发中&#xff0c;良好的代码组织和最佳实践对于项目的可维护性和扩展性至关重要。以下是两个示例&#xff0c;展示了如何遵循CSS最佳实践来组织代码。 示例 1: 使用 BEM&#xff08;Block Element Modifier&#xff09;命名法 BEM 是一种用于提高 CSS 可读性…...

怎么在idea中创建springboot项目

最近想系统学习下springboot&#xff0c;尝试一下全栈路线 从零开始&#xff0c;下面将叙述下如何创建项目 环境 首先确保自己环境没问题 jdkMavenidea 创建springboot项目 1.打开idea&#xff0c;选择file->New->Project 2.选择Spring Initializr->设置JDK->…...

递归读取指定目录下的文件

序言 需要读取sftp服务器上符合指定的文件名正则的文件列表&#xff0c;目前想到的最好的办法就是递归。 我这里引入的依赖是&#xff1a; <!-- jsch-sftp连接 --><dependency><groupId>com.jcraft</groupId><artifactId>jsch</artif…...

【模型压缩】原理及实例

在移动智能终端品类越发多样的时代&#xff0c;为了让模型可以顺利部署在算力和存储空间都受限的移动终端&#xff0c;对模型进行压缩尤为重要。模型压缩&#xff08;model compression&#xff09;可以降低神经网络参数量&#xff0c;减少延迟时间&#xff0c;从而实现提高神经…...

常用的JVM启动参数有哪些?

大家好&#xff0c;我是锋哥。今天分享关于【常用的JVM启动参数有哪些&#xff1f;】面试题。希望对大家有帮助&#xff1b; 常用的JVM启动参数有哪些&#xff1f; 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 JVM&#xff08;Java Virtual Machine&#xff09;启…...

Curvelet 变换与FDCT

Curvelet变换 Curvelet变换 是一种多尺度、多方向的信号分析工具,专门用于处理具有各向异性特征的信号,例如边缘和曲线。与传统的傅里叶变换和小波变换相比,Curvelet变换能够更精确地表示信号中的曲线特征,因此在图像处理、地震数据分析、医学成像等领域得到了广泛应用。 …...

Django Admin 管理工具

Django 提供了基于 web 的管理工具。 Django 自动管理工具是 django.contrib 的一部分。你可以在项目的 settings.py 中的 INSTALLED_APPS 看到它&#xff1a; /HelloWorld/HelloWorld/settings.py 文件代码&#xff1a; INSTALLED_APPS ( django.contrib.admin, django.co…...

Android笔记【19】

具体示例 run: val result someObject.run {// 这里可以使用 thisthis.someMethod() }let: val result someObject?.let {// 这里使用 itit.someMethod() }with: val result with(someObject) {// 这里使用 thissomeMethod() }apply: val obj SomeClass().apply {// 这里使…...

矩阵在资产收益(Asset Returns)中的应用:以资产回报矩阵为例(中英双语)

本文中的例子来源于&#xff1a; 这本书&#xff0c;网址为&#xff1a;https://web.stanford.edu/~boyd/vmls/ 矩阵在资产收益(Asset Returns)中的应用&#xff1a;以资产回报矩阵为例 在量化金融中&#xff0c;矩阵作为一种重要的数学工具&#xff0c;被广泛用于描述和分析…...

Docker 中如何限制CPU和内存的使用 ?

在容器化的动态世界中&#xff0c;Docker 已经成为构建、部署和管理容器化的关键工具应用。然而&#xff0c;Docker 的效率在很大程度上取决于资源管理得有多好。设置适当的内存和 CPU 限制对于优化 Docker 性能至关重要&#xff0c;确保每个容器在不使主机负担过重的情况下获得…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!

简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求&#xff0c;并检查收到的响应。它以以下模式之一…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

从面试角度回答Android中ContentProvider启动原理

Android中ContentProvider原理的面试角度解析&#xff0c;分为​​已启动​​和​​未启动​​两种场景&#xff1a; 一、ContentProvider已启动的情况 1. ​​核心流程​​ ​​触发条件​​&#xff1a;当其他组件&#xff08;如Activity、Service&#xff09;通过ContentR…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...