数据分析实战—IMDB电影数据分析
1.实战内容
1.加载数据到movies_df,输出前5行,输出movies_df.info(),movies_df.describe()
# (1)加载数据集,输出前5行
#导入库
import pandas as pd
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import seaborn as sns
matplotlib.rcParams['font.family'] = 'SimHei'
matplotlib.rcParams['axes.unicode_minus'] = Falsemovies_df=pd.read_csv('movie_metadata.csv')
movies_df.head(5)#输出前5行
此为运行结果部分内容
movies_df.info() # 输出了27列特征的名称,非空数据个数,数据类型
movies_df.describe()#输出movies_df的基本统计量和分位数等值
此为运行结果部分内容
2.数据清洗:统计每列缺失值个数;删除任何含有缺失值的行;删除重复数据;查看数据清洗后的数据集(movies_df_new)信息。
#(4)统计缺失值个数并打印
column_null_number = movies_df.isnull().sum()
print('每列缺失值个数','\n',column_null_number)
# (5)删除有缺失值的行,并将结果保存到数据集(movies_df_nonull)
movies_df_nonull = movies_df.dropna()
print('每列缺失值个数','\n',movies_df_nonull.isnull().sum())
print('数据个数',movies_df_nonull.shape)
# (6)删除重复数据,并将结果保存到数据集(movies_df_new)
movies_df_new = movies_df_nonull.drop_duplicates(keep='first')
movies_df_new.count()
movies_df_new.info() #验证一下结果
3.数据分析及与视化
# (7)统计每个国家及地区出品的电影数量并打印
country_group = movies_df_new.groupby('country').size()
country_group
# (8)显示电影出品数量排名前10位的国家及地区
group_head_10=country_group.sort_values(ascending=False).head(10)
group_head_10
#(9)绘制电影出品数量排名前10位的柱形图,本题5分
group_head_10.plot(kind = 'bar')
plt.xlabel("country/area")
# (10) 按年份统计每年的电影数量
group_year= movies_df_new.groupby('title_year').size()
group_year
#(11)绘制每年的电影数量图形
group_year.plot()
# (12)按年份统计每年电影总数量、彩色影片数量和黑白影片数量并绘制图形
movies_df_new['title_year'].value_counts().sort_index().\
plot(kind='line',label='total number')
movies_df_new[movies_df_new['color']=='Color']['title_year'].\
value_counts().sort_index().plot(kind='line',\
c='red',label='color number')
movies_df_new[movies_df_new['color']!='Color']['title_year'].\
value_counts().sort_index().plot(kind='line',c='black',\
label='Black White number')
plt.legend(loc='upper left')
# (13)计算不同类型的电影数量
# 提示:根据电影题材(Genres)列,进行统计。如某个电影的题材包含在|Action|Adventure|Fantasy|Sci-Fi这四类中。
# 提示:先读取movies_df_new['genres'],然后再用split进行分割读取。
types = []
for tp in movies_df_new['genres']:sp = tp.split('|')for x in sp:types.append(x)
types_df = pd.DataFrame({'genres':types})
types_df
types_df_counts = types_df['genres'].value_counts()
types_df_counts
types_df_counts.plot(kind='bar')
plt.xlabel('genres')
plt.ylabel('number')
plt.title('genres&number')
4.电影票房统计及电影票房相关因素的分析
# (14)每年票房统计并打印
year_gross = movies_df_new.groupby('title_year')['gross'].sum()
year_gross
# (15)绘制每年的票房统计图,本题5分
year_gross.plot(figsize=(10,5))
plt.xticks(range(1915,2018,5))
plt.xlabel('year')
plt.ylabel('gross')
plt.title('year&gross')
# (16)查看票房收入排名前20位的电影片名和类型
movie_grose_20 = movies_df_new.sort_values(['gross'],\
ascending=False).head(20)
movie_grose_20[['movie_title','gross','genres']]
# (17)电影评分与票房的关系散点图
# 提示:纵坐标要除以1000000000
plt.scatter(x= movies_df_new.imdb_score,y=movies_df_new.gross/1000000000)
plt.xlabel('imdb_score')
plt.ylabel('gross')
plt.title('imdb_score&gross')
# (18)电影时长与票房的关系的散点图
# 提示:纵坐标要除以1000000000
plt.scatter(x= movies_df_new.duration,y=movies_df_new.gross/1000000000)
plt.xlabel('duration')
plt.ylabel('gross')
plt.title('duration&gross')
2.数据集下载
https://gitee.com/qxh200000/c_-code/commit/5e5f95f930dfc03b587c20768e82cb4ecbda96fb
相关文章:

数据分析实战—IMDB电影数据分析
1.实战内容 1.加载数据到movies_df,输出前5行,输出movies_df.info(),movies_df.describe() # (1)加载数据集,输出前5行 #导入库 import pandas as pd import numpy as np import matplotlib import matplotlib.pyplo…...
Google guava 最佳实践 学习指南之08 `BiMap`(双向映射)
guava 最佳实践 学习指南 Google Guava 库中的 BiMap(双向映射)是一种特殊的映射类型,它维护了映射的反向视图,并确保不存在重复值,且始终可以安全地使用值获取对应的键。以下是关于 Guava BiMap 的一些介绍和用法&am…...
【设计模式】空接口
(空)接口的用法总结 接口用于定义某个类的特定能力或特性。在工作流或任务管理系统中,接口可以帮助标识哪些任务可以在特定阶段执行。通过实现这些接口,任务类可以被标识为在相应的阶段可以执行,从而在验证和执行逻辑…...

Grad-CAM-解释CNN决策过程的可视化技术
Grad-CAM(Gradient-weighted Class Activation Mapping)是一种用于解释卷积神经网络(CNN)决策过程的可视化技术。其核心思想是通过计算分类分数相对于网络确定的卷积特征的梯度,来识别图像中哪些部分对分类结果最为重要…...
前后端学习中本周遇到的内容
一、RequiresPermissions注解 例如: RequiresPermissions("demo:staff:save") void saveStaff(); 权限控制,要求含有demo:staff:save的权限才能执行方法saveStaff()。 二、遇到的细节问题 在进行增删改查时,发送http请求时&…...

基于海思soc的智能产品开发(巧用mcu芯片)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 对于开发车规级嵌入式软件的同学来说,socmcu这样的组合,他们并不陌生。但是传统的工业领域,比如发动机、医疗或…...

批量DWG文件转dxf(CAD图转dxf)——c#插件实现
此插件可将指定文件夹及子文件夹下的dwg文件批量转为dxf文件。 (使用方法:命令行输入 “netload” 加载插件,然后输入“dwg2dxf”运行,选择文件夹即可。) 生成dxf在此新建的文件夹路径下,包含子文件夹内的…...

flask flask-socketio创建一个网页聊天应用
应用所需环境: python 3.11.11 其他 只需要通过这个命令即可 pip install flask3.1.0 Flask-SocketIO5.4.1 -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple 最好是用conda创建一个新的虚拟环境来验证 完整的pip list如下 Package Version ----…...

使用CNN模型训练图片识别(键盘,椅子,眼镜,水杯,鼠标)
首先是环境: 我是在Anaconda3中的Jupyter Notebook (tensorflow)中进行训练,环境各位自行安装 数据集: 本次数据集五个类型(键盘,椅子,眼镜,水杯,鼠标)我收集了每个接近两…...

Gitlab 数据备份全攻略:命令、方法与注意事项
文章目录 1、备份命令2、备份目录名称说明3、手工备份配置文件3.1 备份配置文件3.2 备份ssh文件 4、备份注意事项4.1 停止puma和sicdekiq组件4.2 copy策略需要更多磁盘空间 5、数据备份方法5.1 docker命令备份5.2 kubectl命令备份5.3 参数说明5.4、选择性备份5.5、非tar备份5.6…...

Vue|scoped样式
在 Vue.js 中,scoped 是一个非常有用的特性,允许你将样式限制在当前组件的作用域内,避免样式泄漏到其他组件。它是通过 Vue 的单文件组件(.vue 文件)中的 <style> 标签实现的。 目录 案例演示创建多个vue文件如何…...
eBPF试一下(TODO)
eBPF程序跟踪linux内核软中断 eBPF (Extended Berkeley Packet Filter) 是一种强大的 Linux 内核技术,最初用于网络数据包过滤,但现在它已经扩展到了多个领域,如性能监控、安全性、跟踪等。eBPF 允许用户在内核中执行代码(以一种安…...

【数据安全】如何保证其安全
数据安全风险 数字经济时代,数据已成为重要的生产要素。智慧城市、智慧政务的建设,正以数据为核心,推动城市管理的智能化和公共服务的优化。然而,公共数据开放共享与隐私保护之间的矛盾日益凸显,如何在确保数据安全的…...
[创业之路-196]:华为成功经验的总结与教训简单总结
目录 前言: 成功经验 教训归纳 前言: 华为作为世界领先的通信设备制造商,其成功经验与教训值得深入探讨。 以下是对华为成功经验的总结与教训的归纳: 成功经验 战略定位明确: 华为始终坚持“死死抓住核心技术”…...

使用 NVIDIA DALI 计算视频的光流
引言 光流(Optical Flow)是计算机视觉中的一种技术,主要用于估计视频中连续帧之间的运动信息。它通过分析像素在时间维度上的移动来预测运动场,广泛应用于目标跟踪、动作识别、视频稳定等领域。 光流的计算传统上依赖 CPU 或 GP…...

【UE5】pmx导入UE5,套动作。(防止“气球人”现象。
参考视频:UE5Animation 16: MMD模型與動作導入 (繁中自動字幕) 问题所在: 做法记录(自用) 1.导入pmx,删除这两个。 2.转换给blender,清理节点。 3.导出时,内嵌贴图,选“复制”。 …...

vue预览和下载 pdf、ppt、word、excel文档,文件类型为链接或者base64格式或者文件流,
** 方法1:word、xls、ppt、pdf 这些文件, 如果预览的文件是链接可以直接打开,可用微软官方的预览地址 ** <iframe width"100%" :src"textVisibleURl " id"myFramePPT" style"border: none;backgroun…...
前端如何实现大文件上传
在前端实现大文件上传的主要方法包括分片上传、断点续传、WebSocket上传和通过第三方服务上传。 分片上传:将大文件切割成多个小片段,然后分别上传。可以使用HTML5的File API和Blob对象,通过FileReader读取文件内容,然后使…...
如何评估并持续优化AI呼入机器人的使用效果
如何评估并持续优化AI呼入机器人的使用效果 作者:开源呼叫中心FreeIPCC 随着人工智能技术的快速发展,AI呼入机器人在客户服务、技术支持等多个领域得到了广泛应用。这些智能系统不仅提高了工作效率,降低了运营成本,还显著改善了…...
找不同,找原因
Yes, you can use “by the time I get back to it” instead of “get around to it,” but there’s a slight difference in tone and meaning: • “Get around to it” implies finally finding the time or motivation to do something after delaying or procrastina…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...

docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...

【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
管理学院权限管理系统开发总结
文章目录 🎓 管理学院权限管理系统开发总结 - 现代化Web应用实践之路📝 项目概述🏗️ 技术架构设计后端技术栈前端技术栈 💡 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 🗄️ 数据库设…...

Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...

云安全与网络安全:核心区别与协同作用解析
在数字化转型的浪潮中,云安全与网络安全作为信息安全的两大支柱,常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异,并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全:聚焦于保…...