Mysql语法之DQL查询的多行函数
Mysql的多行函数和分组
目录
- Mysql的多行函数和分组
- 多行函数
- 概念
- 常用的多行函数
- 数据分组
- 概念
- 语法
- where和having的区别
- 语句关键字及执行顺序
- 语句关键字
- 执行顺序
- 实际操作
- 基本语句格式和多行操作
- 筛选语句格式
多行函数
概念
不管函数处理多少条,只返回一条记录,数据需要进行分组,如果数据可以分为多个组,那么返回的数据条数和组数相同。
常用的多行函数
- max 最大值
- min 最小值
- avg 平均值
- sum 求和
- count 求总数
数据分组
概念
按照某一个条件进行分组,每一组返回对应的结果
语法
- group by
可以对指定的列进行分组,列尽量有相同的 - having
可以对分组之后的数据进行过滤,所以能出现在having中的比较项一定是被分组的列或者是组函数
where和having的区别
- where称之为行级过滤,处理的是表中每一行数据的过滤
- having称之为组级过滤,处理的是分组之后的每一组数据
能使用where的,尽量不要使用having
语句关键字及执行顺序
语句关键字
-
select: 我们要显示那些列的数据
-
from: 从那张表中获取数据
-
where: 从表中获取数据的时候进行行级的数据过滤
-
group by: 对数据进行分组处理,一组获取对应的结果
-
having: 组级过滤,组级过滤的数据必须是分组条件或者是组函数
-
order by: 排序 asc desc
-
limit:数据数限制
执行顺序
from --> where -->group by -->select -->having–>order by–>limit
实际操作
基本语句格式和多行操作
语句格式:
- select 列名 from 表名 group by 列名;
代码展示:
select * from sc;
select count(*)from sc;
select sno,max(score),min(score),avg(score),sum(score),count(*) from sc group by sno;
运行结果:
筛选语句格式
- select 列名 from 表名 group by 列名 having 条件/(order by 列名 asc|desc /limit n)
- select 列名 from 表名 where 条件 group by 列名/(order by 列名 asc|desc /limit n)
代码展示:
select sno,score from sc;
select sno,avg(score) from sc group by sno;
select sno,avg(score) from sc group by sno having avg(score) > 80;
select sno,avg(score) from sc where score >80 group by sno order by avg(score) asc;
select sno,avg(score) from sc where score >80 group by sno limit 3;
select sno,avg(score) from sc group by sno having avg(score) > 70 order by avg(score) desc;
运行结果:
相关文章:

Mysql语法之DQL查询的多行函数
Mysql的多行函数和分组 目录 Mysql的多行函数和分组多行函数概念常用的多行函数 数据分组概念语法where和having的区别 语句关键字及执行顺序语句关键字执行顺序 实际操作基本语句格式和多行操作筛选语句格式 多行函数 概念 不管函数处理多少条,只返回一条记录&…...

OpenSSL 心脏滴血漏洞(CVE-2014-0160)
OpenSSL 心脏滴血漏洞(CVE-2014-0160) Openssl简介: 该漏洞在国内被译为"OpenSSL心脏出血漏洞”,因其破坏性之大和影响的范围之广,堪称网络安全里程碑事件。 OpenSSL心脏滴血漏洞的大概原理是OpenSSL在2年前引入了心跳(hearbea0机制来维特TS链接的…...

监控视频汇聚融合云平台一站式解决视频资源管理痛点
随着5G技术的广泛应用,各领域都在通信技术加持下通过海量终端设备收集了大量视频、图像等物联网数据,并通过人工智能、大数据、视频监控等技术方式来让我们的世界更安全、更高效。然而,随着数字化建设和生产经营管理活动的长期开展࿰…...

ElasticSearch 数据同步
1、同步调用 操作步骤: 管理系统新增酒店数据添加到数据库调用 ES 更新文档接口,同步数据库的数据到 ES 文档 流程图: 特点: 优点:实现简单,粗暴缺点:业务耦合度高 2、异步消息通知 操作步骤…...

MyBatis-Plus中isNull与SQL语法详解:处理空值的正确姿势
目录 前言1. 探讨2. 基本知识3. 总结 前言 🤟 找工作,来万码优才:👉 #小程序://万码优才/r6rqmzDaXpYkJZF 基本的Java知识推荐阅读: java框架 零基础从入门到精通的学习路线 附开源项目面经等(超全&#x…...

RabbitMQ个人理解与基本使用
目录 一. 作用: 二. RabbitMQ的5中队列模式: 1. 简单模式 2. Work模式 3. 发布/订阅模式 4. 路由模式 5. 主题模式 三. 消息持久化: 消息过期时间 ACK应答 四. 同步接收和异步接收: 应用场景 五. 基本使用 ÿ…...

Python球球大作战
系列文章 序号直达链接表白系列1Python制作一个无法拒绝的表白界面2Python满屏飘字表白代码3Python无限弹窗满屏表白代码4Python李峋同款可写字版跳动的爱心5Python流星雨代码6Python漂浮爱心代码7Python爱心光波代码8Python普通的玫瑰花代码9Python炫酷的玫瑰花代码10Python多…...

入侵他人电脑,实现远程控制(待补充)
待补充 在获取他人无线网网络密码后,进一步的操作是实现入侵他人电脑,这一步需要获取对方的IP地址并需要制作自己的代码工具自动化的开启或者打开对方的远程访问权限。 1、获取IP地址(通过伪造的网页、伪造的Windows窗口、hook,信…...

数据分析实战—IMDB电影数据分析
1.实战内容 1.加载数据到movies_df,输出前5行,输出movies_df.info(),movies_df.describe() # (1)加载数据集,输出前5行 #导入库 import pandas as pd import numpy as np import matplotlib import matplotlib.pyplo…...
Google guava 最佳实践 学习指南之08 `BiMap`(双向映射)
guava 最佳实践 学习指南 Google Guava 库中的 BiMap(双向映射)是一种特殊的映射类型,它维护了映射的反向视图,并确保不存在重复值,且始终可以安全地使用值获取对应的键。以下是关于 Guava BiMap 的一些介绍和用法&am…...
【设计模式】空接口
(空)接口的用法总结 接口用于定义某个类的特定能力或特性。在工作流或任务管理系统中,接口可以帮助标识哪些任务可以在特定阶段执行。通过实现这些接口,任务类可以被标识为在相应的阶段可以执行,从而在验证和执行逻辑…...

Grad-CAM-解释CNN决策过程的可视化技术
Grad-CAM(Gradient-weighted Class Activation Mapping)是一种用于解释卷积神经网络(CNN)决策过程的可视化技术。其核心思想是通过计算分类分数相对于网络确定的卷积特征的梯度,来识别图像中哪些部分对分类结果最为重要…...
前后端学习中本周遇到的内容
一、RequiresPermissions注解 例如: RequiresPermissions("demo:staff:save") void saveStaff(); 权限控制,要求含有demo:staff:save的权限才能执行方法saveStaff()。 二、遇到的细节问题 在进行增删改查时,发送http请求时&…...

基于海思soc的智能产品开发(巧用mcu芯片)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 对于开发车规级嵌入式软件的同学来说,socmcu这样的组合,他们并不陌生。但是传统的工业领域,比如发动机、医疗或…...

批量DWG文件转dxf(CAD图转dxf)——c#插件实现
此插件可将指定文件夹及子文件夹下的dwg文件批量转为dxf文件。 (使用方法:命令行输入 “netload” 加载插件,然后输入“dwg2dxf”运行,选择文件夹即可。) 生成dxf在此新建的文件夹路径下,包含子文件夹内的…...

flask flask-socketio创建一个网页聊天应用
应用所需环境: python 3.11.11 其他 只需要通过这个命令即可 pip install flask3.1.0 Flask-SocketIO5.4.1 -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple 最好是用conda创建一个新的虚拟环境来验证 完整的pip list如下 Package Version ----…...

使用CNN模型训练图片识别(键盘,椅子,眼镜,水杯,鼠标)
首先是环境: 我是在Anaconda3中的Jupyter Notebook (tensorflow)中进行训练,环境各位自行安装 数据集: 本次数据集五个类型(键盘,椅子,眼镜,水杯,鼠标)我收集了每个接近两…...

Gitlab 数据备份全攻略:命令、方法与注意事项
文章目录 1、备份命令2、备份目录名称说明3、手工备份配置文件3.1 备份配置文件3.2 备份ssh文件 4、备份注意事项4.1 停止puma和sicdekiq组件4.2 copy策略需要更多磁盘空间 5、数据备份方法5.1 docker命令备份5.2 kubectl命令备份5.3 参数说明5.4、选择性备份5.5、非tar备份5.6…...

Vue|scoped样式
在 Vue.js 中,scoped 是一个非常有用的特性,允许你将样式限制在当前组件的作用域内,避免样式泄漏到其他组件。它是通过 Vue 的单文件组件(.vue 文件)中的 <style> 标签实现的。 目录 案例演示创建多个vue文件如何…...
eBPF试一下(TODO)
eBPF程序跟踪linux内核软中断 eBPF (Extended Berkeley Packet Filter) 是一种强大的 Linux 内核技术,最初用于网络数据包过滤,但现在它已经扩展到了多个领域,如性能监控、安全性、跟踪等。eBPF 允许用户在内核中执行代码(以一种安…...

国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...

ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...

Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...