DAY36|动态规划Part04|LeetCode:1049. 最后一块石头的重量 II、494. 目标和、474.一和零
目录
LeetCode:1049. 最后一块石头的重量 II
基本思路
C++代码
LeetCode:494. 目标和
基本思路
C++代码
LeetCode:474.一和零
基本思路
C++代码
LeetCode:1049. 最后一块石头的重量 II
力扣代码链接
文字讲解:LeetCode:1049. 最后一块石头的重量 II
视频讲解:动态规划之背包问题,这个背包最多能装多少?

基本思路
本题其实就是尽量让石头分成重量相同的两堆,相撞之后剩下的石头最小,这样就化解成01背包问题了。其中石头的重量为stones[i],物品的价值也为stones[i],对应着01背包里的物品重量weight[i]和物品价值value[i]。
- 确定dp数组以及下标的含义
dp[j]的含义,容量为j的背包,最多可以装的价值为 dp[j]。而价值其实也就是背包中能够承载的石头的最大重量。
- 确定递推公式
01背包的递推公式为:dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);而这里的weight[i]和value[i]实际上都是stone[i],也就是石头的重量。因此,递推公式可以写成:dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);
- dp数组如何初始化
既然 dp[j]中的j表示容量,那么最大容量(重量)是多少呢,就是所有石头的重量和。根据提示易知,我们要求的target其实只是最大重量的一半,也就是15000。接下来就是如何初始化dp[j]呢,因为重量都不会是负数,所以dp[j]都初始化为0就可以了。
vector<int> dp(15001, 0);
- 确定遍历顺序
因为采用的是一维dp数组的方式,因此遍历物品的for循环放在外层而变量背包容量大小的for循环放在内层,并且要保证内层for循环采用倒序遍历。
for (int i = 0; i < stones.size(); i++) { // 遍历物品for (int j = target; j >= stones[i]; j--) { // 遍历背包dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);}
}
最后dp[target]就是容量为target的背包所能背的最大重量。在计算target的时候,target = sum / 2 因为是向下取整,所以sum - dp[target] 一定是大于等于dp[target]的。
C++代码
class Solution {
public:int lastStoneWeightII(vector<int>& stones) {vector<int> dp(15001, 0);int sum = 0;for (int i = 0; i < stones.size(); i++) sum += stones[i];int target = sum / 2;for (int i = 0; i < stones.size(); i++) { // 遍历物品for (int j = target; j >= stones[i]; j--) { // 遍历背包dp[j] = max(dp[j], dp[j - stones[i]] + stones[i]);}}return sum - dp[target] - dp[target];}
};
LeetCode:494. 目标和
力扣代码链接
文字讲解:LeetCode:494. 目标和
视频讲解:动态规划之背包问题,装满背包有多少种方法?

基本思路
最容易想到的就是回溯算法,但是使用回溯算法容易超时。
class Solution {
private:vector<vector<int>> result;vector<int> path;void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {if (sum == target) {result.push_back(path);}// 如果 sum + candidates[i] > target 就终止遍历for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {sum += candidates[i];path.push_back(candidates[i]);backtracking(candidates, target, sum, i + 1);sum -= candidates[i];path.pop_back();}}
public:int findTargetSumWays(vector<int>& nums, int S) {int sum = 0;for (int i = 0; i < nums.size(); i++) sum += nums[i];if (S > sum) return 0; // 此时没有方案if ((S + sum) % 2) return 0; // 此时没有方案,两个int相加的时候要格外小心数值溢出的问题int bagSize = (S + sum) / 2; // 转变为组合总和问题,bagsize就是要求的和// 以下为回溯法代码result.clear();path.clear();sort(nums.begin(), nums.end()); // 需要排序backtracking(nums, bagSize, 0, 0);return result.size();}
};
我们如果使用动态规划的方法,可以假设正数的总和为x,负数的总和为y,所有元素的绝对值之和为sum,目标和为target。那么易得:

可以得到:

这里的x实际上就是背包容量BagSize。和之前的方法不同的地方在于,前面的题是求容量为j的背包最多能装下多少。而这个题目是求,装满容量为j的背包,一共有多少种方法。
- 确定dp数组以及下标的含义
dp[j]表示装满容量为j的背包一共有dp[j]种方法。
- 确定递推公式
dp[j] = dp[j] + dp[j-nums[i]],可以理解为不包含物品i为上一次循环中的dp[j]和包含物品i的dp[j-nums[i]]。
- dp数组如何初始化
这里dp[0] 同样初始为1 ,即装满背包为0的方法有一种,放0件物品。并且如果背包容量j和物品0的大小相同,此时dp[nums[i]] = 1。
- 确定遍历顺序
遍历物品放在外循环,遍历背包在内循环,且内循环倒序(为了保证物品只使用一次)。
C++代码
class Solution {
public:int findTargetSumWays(vector<int>& nums, int target) {int sum = 0;for (int i = 0; i < nums.size(); i++) sum += nums[i];if (abs(target) > sum) return 0; // 此时没有方案if ((target + sum) % 2 == 1) return 0; // 此时没有方案int bagSize = (target + sum) / 2;vector<int> dp(bagSize + 1, 0);dp[0] = 1;for (int i = 0; i < nums.size(); i++) {for (int j = bagSize; j >= nums[i]; j--) {dp[j] += dp[j - nums[i]];}}return dp[bagSize];}
};
LeetCode:474.一和零
力扣代码链接
文字讲解:LeetCode:474.一和零
视频讲解:动态规划之背包问题,装满这个背包最多用多少个物品?

基本思路
这个题目依旧是一个01背包问题。但是需要统计每个字符串元素的0和1的数量,也就是两个维度的背包。
- 确定dp数组以及下标的含义
dp[i][j]:最多有i个0和j个1的strs的最大子集的大小为dp[i][j]。
- 确定递推公式
dp[i][j] 可以由前一个strs里的字符串推导出来,strs里的字符串有zeroNum个0,oneNum个1。dp[i][j] 就可以是 dp[i - zeroNum][j - oneNum] + 1。
所以递推公式:dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);
- dp数组如何初始化
01背包的dp数组初始化为0就可以。因为物品价值不会是负数,初始为0,保证递推的时候dp[i][j]不会被初始值覆盖。
- 确定遍历顺序
在本题中物品就是strs里的字符串,背包容量是题目描述中的m和n分别代表了dp数组的两个维度。
for (string str : strs) { // 遍历物品int oneNum = 0, zeroNum = 0;for (char c : str) {if (c == '0') zeroNum++;else oneNum++;}for (int i = m; i >= zeroNum; i--) { // 遍历背包容量且从后向前遍历!for (int j = n; j >= oneNum; j--) {dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);}}
}
- 举例推导dp数组
以输入:["10","0001","111001","1","0"],m = 3,n = 3为例

C++代码
class Solution {
public:int findMaxForm(vector<string>& strs, int m, int n) {vector<vector<int>> dp(m + 1, vector<int> (n + 1, 0)); // 默认初始化0for (string str : strs) { // 遍历物品int oneNum = 0, zeroNum = 0;for (char c : str) {if (c == '0') zeroNum++;else oneNum++;}for (int i = m; i >= zeroNum; i--) { // 遍历背包容量且从后向前遍历!for (int j = n; j >= oneNum; j--) {dp[i][j] = max(dp[i][j], dp[i - zeroNum][j - oneNum] + 1);}}}return dp[m][n];}
};相关文章:
DAY36|动态规划Part04|LeetCode:1049. 最后一块石头的重量 II、494. 目标和、474.一和零
目录 LeetCode:1049. 最后一块石头的重量 II 基本思路 C代码 LeetCode:494. 目标和 基本思路 C代码 LeetCode:474.一和零 基本思路 C代码 LeetCode:1049. 最后一块石头的重量 II 力扣代码链接 文字讲解:LeetCode:1049. 最后一块石头的重量 II 视频讲解&…...
Linux 下SVN新手操作手册
下面来介绍Linux 下 SVN操作方法: 1、SVN的安装 Centos 7 安装Subversion sudo yum -y install subversion Ubuntu 安装Subversion sudo apt-get install subversion 自定义安装,官方地址:https://subversion.apache.org/ 2、SVN的使用…...
障碍感知 | 基于KD树的障碍物快速处理(附案例分析与ROS C++仿真)
目录 1 障碍处理与KD树2 KD树核心原理2.1 KD树的构造2.2 KD树的查找 3 仿真实现3.1 KD树基本算法3.2 ROS C仿真 1 障碍处理与KD树 在机器人感知系统中,传感器(如激光雷达、摄像头等)会采集周围的环境数据,例如代价地图、八叉树地…...
Electron -- Electron Fiddle(一)
Electron Fiddle 是一个由 Electron 团队开发的开源工具,它允许开发者快速创建、运行和调试 Electron 应用。这个工具提供了一个简洁的界面,使用户无需配置复杂的开发环境,就能快速体验和学习 Electron。强烈建议将其安装为学习工具。 学习它…...
详解Redis的常用命令
目录 KEYS 语法 EXISTS 语法 DEL 语法 EXPIRE 语法 TTL 语法 TYPE 语法 Redis数据结构和内部编码 KEYS 返回所有满⾜样式(pattern)的 key。 返回值:匹配 pattern 的所有 key。 语法 ⽀持如下统配样式: h?llo matches hello, ha…...
elasticache备份
Elasticsearch 本地快照操作流程 配置快照存储路径 在 elasticsearch.yml 文件中配置以下字段以指定数据、日志和快照存储路径:path:data: /data/data # 数据存储路径logs: /data/log # 日志存储路径repo: /data/snapshot # 快照存储路径确保路径 /dat…...
Tomcat负载均衡全解析
一、Java项目概述 (一)Java语言特点 Java是一种计算机应用语言,在开发王者和管理系统等方面有着广泛的应用。它具有开源免费的特性,不过需要注意的是,虽然语言本身开源,但是后期开发工具可能会收取费用。 (二)、JDK和Tomcat 1,JDK:作为Java语言的开发工具,在Linu…...
[LeetCode-Python版] 定长滑动窗口8——2461. 长度为 K 子数组中的最大和
题目 给你一个整数数组 nums 和一个整数 k 。请你从 nums 中满足下述条件的全部子数组中找出最大子数组和: 子数组的长度是 k,且 子数组中的所有元素 各不相同 。 返回满足题面要求的最大子数组和。如果不存在子数组满足这些条件,返回 0 。…...
springboot476基于vue篮球联盟管理系统(论文+源码)_kaic
摘 要 如今社会上各行各业,都喜欢用自己行业的专属软件工作,互联网发展到这个时候,人们已经发现离不开了互联网。新技术的产生,往往能解决一些老技术的弊端问题。因为传统篮球联盟管理系统信息管理难度大,容错率低&am…...
预约参观华为基地,见证行业巅峰
✨ 大家好呀!今天要跟大家分享一个超酷的体验,关于华为的参观学习之旅!🚀 华为成立于1987年,位于深圳,是全球领先的信息与通信技术(ICT)解决方案供应商哦!他们专注于科技…...
【Flink-scala】DataSet编程模型介绍及数据源
DataStream 学习 1.DataStream编程模型总结 文章目录 DataStream 学习介绍一、DataSet编程模型二、数据源1.文件类数据源2.集合类数据源3.通用类数据源4第三方文件系统 介绍 Flink把批处理看成是一个流处理的特例,因此可以在底层统一的流处理引擎上,同…...
Odrive源码分析(四) 位置爬坡算法
Odrive中自带一个简单的梯形速度爬坡算法,本文分析下这部分代码。 代码如下: #include <cmath> #include "odrive_main.h" #include "utils.hpp"// A sign function where input 0 has positive sign (not 0) float sign_ha…...
[Unity Shader][图形渲染] Shader数学基础11 - 复合变换详解
在图形学与Shader编程中,复合变换是将平移、旋转和缩放等基本几何变换组合在一起,从而实现更复杂的物体变换效果。复合变换的本质是通过矩阵的串联操作,依次应用多个变换。 本文将介绍复合变换的数学原理、矩阵计算方法及注意事项,并结合实际编程中的实现细节帮助你掌握其…...
使用Python实现智能家居控制系统:开启智慧生活的钥匙
友友们好! 我的新专栏《Python进阶》正式启动啦!这是一个专为那些渴望提升Python技能的朋友们量身打造的专栏,无论你是已经有一定基础的开发者,还是希望深入挖掘Python潜力的爱好者,这里都将是你不可错过的宝藏。 在这个专栏中,你将会找到: ● 深入解析:每一篇文章都将…...
使用 HTML5 Canvas 实现动态蜈蚣动画
使用 HTML5 Canvas 实现动态蜈蚣动画 1. 项目概述 我们将通过 HTML 和 JavaScript 创建一个动态蜈蚣。蜈蚣由多个节段组成,每个节段看起来像一个小圆形,并且每个节段上都附带有“脚”。蜈蚣的头部会在画布上随机移动。 完整代码在底部!&…...
计算机视觉目标检测——DETR(End-to-End Object Detection with Transformers)
计算机视觉目标检测——DETR(End-to-End Object Detection with Transformers) 文章目录 计算机视觉目标检测——DETR(End-to-End Object Detection with Transformers)摘要Abstract一、DETR算法1. 摘要(Abstract)2. 引言(Introduction&#…...
uniapp .gitignore
打开HBuilderX,在项目根目录下新建文件 .gitignore复制下面内容 #忽略unpackge目录下除了res目录的所有目录 unpackage/* !unpackage/res/#忽略.hbuilderx目录 .hbuilderx# 忽略node_modules目录下的所有文件 node_modules/# 忽略锁文件 package-lock.json yarn.l…...
JavaWeb Servlet的反射优化、Dispatcher优化、视图(重定向)优化、方法参数值获取优化
目录 1. 背景2. 实现2.1 pom.xml2.2 FruitController.java2.3 DispatcherServlet.java2.4 applicationContext.xml 3. 测试 1. 背景 前面我们做了Servlet的一个案例。但是存在很多问题,现在我们要做优化,优化的步骤如下: 每个Fruit请求都需…...
备忘一个FDBatchMove数据转存的问题
使用FDBatchMove的SQL导入excel表到sql表,设置条件时一头雾水,函数不遵守sql的规则。 比如替换字段的TAB键值为空,replace(字段名,char(9),)竟然提示错误,百思不得其解。 试遍了几乎所有的函数,竟然是chr(9)。 这个…...
CEF127 编译指南 MacOS 篇 - 编译 CEF(六)
1. 引言 经过前面的准备工作,我们已经完成了所有必要的环境配置。本文将详细介绍如何在 macOS 系统上编译 CEF127。通过正确的编译命令和参数配置,我们将完成 CEF 的构建工作,最终生成可用的二进制文件。 2. 编译前准备 2.1 确认环境变量 …...
国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
手游刚开服就被攻击怎么办?如何防御DDoS?
开服初期是手游最脆弱的阶段,极易成为DDoS攻击的目标。一旦遭遇攻击,可能导致服务器瘫痪、玩家流失,甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案,帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
DBAPI如何优雅的获取单条数据
API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...
LangFlow技术架构分析
🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...
面试高频问题
文章目录 🚀 消息队列核心技术揭秘:从入门到秒杀面试官1️⃣ Kafka为何能"吞云吐雾"?性能背后的秘密1.1 顺序写入与零拷贝:性能的双引擎1.2 分区并行:数据的"八车道高速公路"1.3 页缓存与批量处理…...
