LMDeploy 量化部署进阶实践
1 配置LMDeploy环境
1.1 InternStudio开发机创建与环境搭建
打开InternStudio平台,进入如下界面创建环境

在终端中,让我们输入以下指令,来创建一个名为lmdeploy的conda环境,python版本为3.10,创建成功后激活环境并安装0.5.3版本的lmdeploy及相关包。
conda create -n lmdeploy python=3.10 -y
conda activate lmdeploy
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
pip install timm==1.0.8 openai==1.40.3 lmdeploy[all]==0.5.3pip install datasets==2.19.2
1.2 InternStudio环境获取模型
为方便文件管理,我们需要一个存放模型的目录,本教程统一放置在/root/models/目录。
运行以下命令,创建文件夹并设置开发机共享目录的软链接。
mkdir /root/models
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-7b-chat /root/models
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2_5-1_8b-chat /root/models
ln -s /root/share/new_models/OpenGVLab/InternVL2-26B /root/models
1.2.1基础任务(完成此任务即完成闯关)
使用结合W4A16量化与kv cache量化的internlm2_5-1_8b-chat模型封装本地API并与大模型进行一次对话,作业截图需包括显存占用情况与大模型回复
1.3 LMDeploy验证启动文件
在量化工作正式开始前,我们还需要验证一下获取的模型文件能否正常工作,以免竹篮打水一场空。
让我们进入创建好的conda环境并启动internlm2_5-1_8b-chat!
conda activate lmdeploy
lmdeploy chat /root/models/internlm2_5-1_8b-chat
此时,我们可以在CLI(“命令行界面” Command Line Interface的缩写)中和InternLM2.5尽情对话了,注意输入内容完成后需要按两次回车才能够执行,以下为示例。

InternStudio提供的资源监控。

此外,如果想要实现显存资源的监控,我们也可以新开一个终端输入如下两条指令的任意一条,查看命令输入时的显存占用情况。
nvidia-smi
studio-smi

注释:实验室提供的环境为虚拟化的显存,nvidia-smi是NVIDIA GPU驱动程序的一部分,用于显示NVIDIA GPU的当前状态,故当前环境只能看80GB单卡 A100 显存使用情况,无法观测虚拟化后30%或50%A100等的显存情况。针对于此,实验室提供了studio-smi 命令工具,能够观测到虚拟化后的显存使用情况。
2 LMDeploy与InternLM2.5
2.1 LMDeploy API部署INternLM2.5
在上一章节,我们直接在本地部署InternLM2.5。而在实际应用中,我们有时会将大模型封装为API接口服务,供客户端访问。
2.1.1 启动API服务器
首先让我们进入创建好的conda环境,并通下命令启动API服务器,部署InternLM2.5模型:
conda activate lmdeploy
lmdeploy serve api_server \/root/models/internlm2_5-7b-chat \--model-format hf \--quant-policy 0 \--server-name 0.0.0.0 \--server-port 23333 \--tp 1
命令解释:
lmdeploy serve api_server:这个命令用于启动API服务器。/root/models/internlm2_5-7b-chat:这是模型的路径。--model-format hf:这个参数指定了模型的格式。hf代表“Hugging Face”格式。--quant-policy 0:这个参数指定了量化策略。--server-name 0.0.0.0:这个参数指定了服务器的名称。在这里,0.0.0.0是一个特殊的IP地址,它表示所有网络接口。--server-port 23333:这个参数指定了服务器的端口号。在这里,23333是服务器将监听的端口号。--tp 1:这个参数表示并行数量(GPU数量)。
这一步由于部署在远程服务器上,所以本地需要做一下ssh转发才能直接访问。在你本地打开一个cmd或powershell窗口,输入命令如下:
ssh -CNg -L 23333:127.0.0.1:23333 root@ssh.intern-ai.org.cn -p 你的ssh端口号
输入后,首次访问可能会询问你是否继续连接,敲入yes并回车即可。
然后打开浏览器,访问http://127.0.0.1:23333看到如下界面即代表部署成功。


2.1.2 以命令行形式连接API服务器
关闭http://127.0.0.1:23333网页,但保持终端和本地窗口不动,新建一个终端。
运行如下命令,激活conda环境并启动命令行客户端。
conda activate lmdeploy
lmdeploy serve api_client http://localhost:23333
稍待片刻,等出现double enter to end input >>>的输入提示即启动成功,此时便可以随意与InternLM2.5对话,同样是两下回车确定,输入exit退出。

2.1.3 以Gradio网页形式连接API服务器
保持第一个终端不动,在新建终端中输入exit退出。
输入以下命令,使用Gradio作为前端,启动网页。
lmdeploy serve gradio http://localhost:23333 \--server-name 0.0.0.0 \--server-port 6006
关闭之前的cmd/powershell窗口,重开一个,再次做一下ssh转发(因为此时端口不同)。在你本地打开一个cmd或powershell窗口,输入命令如下。
ssh -CNg -L 6006:127.0.0.1:6006 root@ssh.intern-ai.org.cn -p <你的ssh端口号>
打开浏览器,访问地址http://127.0.0.1:6006,然后就可以与模型尽情对话了。

2.2 LMDeploy Lite
随着模型变得越来越大,我们需要一些大模型压缩技术来降低模型部署的成本,并提升模型的推理性能。LMDeploy 提供了权重量化和 k/v cache两种策略。
2.2.1 设置最大kv cache缓存大小
kv cache是一种缓存技术,通过存储键值对的形式来复用计算结果,以达到提高性能和降低内存消耗的目的。在大规模训练和推理中,kv cache可以显著减少重复计算量,从而提升模型的推理速度。理想情况下,kv cache全部存储于显存,以加快访存速度。
模型在运行时,占用的显存可大致分为三部分:模型参数本身占用的显存、kv cache占用的显存,以及中间运算结果占用的显存。LMDeploy的kv cache管理器可以通过设置--cache-max-entry-count参数,控制kv缓存占用剩余显存的最大比例。默认的比例为0.8。
显存占用情况:


2.2.2 设置在线 kv cache int4/int8 量化
自 v0.4.0 起,LMDeploy 支持在线 kv cache int4/int8 量化,量化方式为 per-head per-token 的非对称量化。此外,通过 LMDeploy 应用 kv 量化非常简单,只需要设定 quant_policy 和cache-max-entry-count参数。目前,LMDeploy 规定 quant_policy=4 表示 kv int4 量化,quant_policy=8 表示 kv int8 量化。
我们通过2.1 LMDeploy API部署InternLM2.5的实践为例,输入以下指令,启动API服务器。
lmdeploy serve api_server \/root/models/internlm2_5-1_8b-chat \--model-format hf \--quant-policy 4 \--cache-max-entry-count 0.4\--server-name 0.0.0.0 \--server-port 23333 \--tp 1
稍待片刻,显示如下即代表服务启动成功。
2.2.3 W4A16 模型量化和部署
准确说,模型量化是一种优化技术,旨在减少机器学习模型的大小并提高其推理速度。量化通过将模型的权重和激活从高精度(如16位浮点数)转换为低精度(如8位整数、4位整数、甚至二值网络)来实现。
那么标题中的W4A16又是什么意思呢?
- W4:这通常表示权重量化为4位整数(int4)。这意味着模型中的权重参数将从它们原始的浮点表示(例如FP32、BF16或FP16,Internlm2.5精度为BF16)转换为4位的整数表示。这样做可以显著减少模型的大小。
- A16:这表示激活(或输入/输出)仍然保持在16位浮点数(例如FP16或BF16)。激活是在神经网络中传播的数据,通常在每层运算之后产生。
因此,W4A16的量化配置意味着:
- 权重被量化为4位整数。
- 激活保持为16位浮点数。
让我们回到LMDeploy,在最新的版本中,LMDeploy使用的是AWQ算法,能够实现模型的4bit权重量化。输入以下指令,执行量化工作。(不建议运行,在InternStudio上运行需要8小时)
完成作业时请使用1.8B模型进行量化:(建议运行以下命令)
lmdeploy lite auto_awq \/root/models/internlm2_5-1_8b-chat \--calib-dataset 'ptb' \--calib-samples 128 \--calib-seqlen 2048 \--w-bits 4 \--w-group-size 128 \--batch-size 1 \--search-scale False \--work-dir /root/models/internlm2_5-1_8b-chat-w4a16-4bit
命令解释:
lmdeploy lite auto_awq:lite这是LMDeploy的命令,用于启动量化过程,而auto_awq代表自动权重量化(auto-weight-quantization)。/root/models/internlm2_5-7b-chat: 模型文件的路径。--calib-dataset 'ptb': 这个参数指定了一个校准数据集,这里使用的是’ptb’(Penn Treebank,一个常用的语言模型数据集)。--calib-samples 128: 这指定了用于校准的样本数量—128个样本--calib-seqlen 2048: 这指定了校准过程中使用的序列长度—2048--w-bits 4: 这表示权重(weights)的位数将被量化为4位。--work-dir /root/models/internlm2_5-7b-chat-w4a16-4bit: 这是工作目录的路径,用于存储量化后的模型和中间结果。
等终端输出如下时,说明正在推理中,稍待片刻。


如果此处出现报错:TypeError: 'NoneType' object is not callable,原因是 当前版本的 datasets3.0 无法下载calibrate数据集 在命令前加一行 pip install datasets==2.19.2 可以解决
等待推理完成,便可以直接在你设置的目标文件夹看到对应的模型文件。
那么推理后的模型和原本的模型区别在哪里呢?最明显的两点是模型文件大小以及占据显存大小。
我们可以输入如下指令查看在当前目录中显示所有子目录的大小。
cd /root/models/
du -sh *

那么原模型大小呢?输入以下指令查看。
cd /root/share/new_models/Shanghai_AI_Laboratory/
du -sh *

那么显存占用情况对比呢?输入以下指令启动量化后的模型。
lmdeploy chat /root/models/internlm2_5-1_8b-chat-w4a16-4bit/ --model-format awq
稍待片刻,我们直接观测右上角的显存占用情况。

2.2.4 W4A16 量化+ KV cache+KV cache 量化
输入以下指令,让我们同时启用量化后的模型、设定kv cache占用和kv cache int4量化。
lmdeploy serve api_server \/root/models/internlm2_5-1_8b-chat-w4a16-4bit/ \--model-format awq \--quant-policy 4 \--cache-max-entry-count 0.4\--server-name 0.0.0.0 \--server-port 23333 \--tp 1
此时显存占比如下:
![]()
3 LMDeploy与InternVL2
3.1 LMDeploy Lite
InternVL2-26B需要约70+GB显存,但是为了让我们能够在30%A100上运行,需要先进行量化操作,这也是量化本身的意义所在——即降低模型部署成本。
针对InternVL系列模型,让我们先进入conda环境,并输入以下指令,执行模型的量化工作。(本步骤耗时较长,请耐心等待)
conda activate lmdeploy
lmdeploy lite auto_awq \/root/models/InternVL2-26B \--calib-dataset 'ptb' \--calib-samples 128 \--calib-seqlen 2048 \--w-bits 4 \--w-group-size 128 \--batch-size 1 \--search-scale False \--work-dir /root/models/InternVL2-26B-w4a16-4bit
等终端输出如下时,说明正在推理中,稍待片刻。

4 LMDeploy之FastAPI与Function call
之前在2.1.1 启动API服务器与3.2 LMDeploy API部署InternVL2均是借助FastAPI封装一个API出来让LMDeploy自行进行访问,在这一章节中我们将依托于LMDeploy封装出来的API进行更加灵活更具DIY的开发。
4.1 API开发
与之前一样,让我们进入创建好的conda环境并输入指令启动API服务器。
完成作业时请使用以下命令:
conda activate lmdeploy
lmdeploy serve api_server \/root/models/internlm2_5-1_8b-chat-w4a16-4bit \--model-format awq \--cache-max-entry-count 0.4 \--quant-policy 4 \--server-name 0.0.0.0 \--server-port 23333 \--tp 1
保持终端窗口不动,新建一个终端。
在新建终端中输入如下指令,新建internlm2_5.py。
touch /root/internlm2_5.py
将以下内容复制粘贴进internlm2_5.py。
# 导入openai模块中的OpenAI类,这个类用于与OpenAI API进行交互
from openai import OpenAI# 创建一个OpenAI的客户端实例,需要传入API密钥和API的基础URL
client = OpenAI(api_key='YOUR_API_KEY', # 替换为你的OpenAI API密钥,由于我们使用的本地API,无需密钥,任意填写即可base_url="http://0.0.0.0:23333/v1" # 指定API的基础URL,这里使用了本地地址和端口
)# 调用client.models.list()方法获取所有可用的模型,并选择第一个模型的ID
# models.list()返回一个模型列表,每个模型都有一个id属性
model_name = client.models.list().data[0].id# 使用client.chat.completions.create()方法创建一个聊天补全请求
# 这个方法需要传入多个参数来指定请求的细节
response = client.chat.completions.create(model=model_name, # 指定要使用的模型IDmessages=[ # 定义消息列表,列表中的每个字典代表一个消息{"role": "system", "content": "你是一个友好的小助手,负责解决问题."}, # 系统消息,定义助手的行为{"role": "user", "content": "帮我讲述一个关于狐狸和西瓜的小故事"}, # 用户消息,询问时间管理的建议],temperature=0.8, # 控制生成文本的随机性,值越高生成的文本越随机top_p=0.8 # 控制生成文本的多样性,值越高生成的文本越多样
)# 打印出API的响应结果
print(response.choices[0].message.content)
按Ctrl+S键保存(Mac用户按Command+S)。
现在让我们在新建终端输入以下指令激活环境并运行python代码。
conda activate lmdeploy
python /root/internlm2_5.py
终端会输出如下结果。

4.2 Function call
关于Function call,即函数调用功能,它允许开发者在调用模型时,详细说明函数的作用,并使模型能够智能地根据用户的提问来输入参数并执行函数。完成调用后,模型会将函数的输出结果作为回答用户问题的依据。
首先让我们进入创建好的conda环境并启动API服务器。
conda activate lmdeploy
lmdeploy serve api_server \/root/models/internlm2_5-1_8b-chat \--model-format hf \--quant-policy 0 \--server-name 0.0.0.0 \--server-port 23333 \--tp 1
目前LMDeploy在0.5.3版本中支持了对InternLM2, InternLM2.5和llama3.1这三个模型,故我们选用InternLM2.5 封装API。
让我们使用一个简单的例子作为演示。输入如下指令,新建internlm2_5_func.py。
touch /root/internlm2_5_func.py
from openai import OpenAIdef add(a: int, b: int):return a + bdef mul(a: int, b: int):return a * btools = [{'type': 'function','function': {'name': 'add','description': 'Compute the sum of two numbers','parameters': {'type': 'object','properties': {'a': {'type': 'int','description': 'A number',},'b': {'type': 'int','description': 'A number',},},'required': ['a', 'b'],},}
}, {'type': 'function','function': {'name': 'mul','description': 'Calculate the product of two numbers','parameters': {'type': 'object','properties': {'a': {'type': 'int','description': 'A number',},'b': {'type': 'int','description': 'A number',},},'required': ['a', 'b'],},}
}]
messages = [{'role': 'user', 'content': 'Compute (3+5)*2'}]client = OpenAI(api_key='YOUR_API_KEY', base_url='http://0.0.0.0:23333/v1')
model_name = client.models.list().data[0].id
response = client.chat.completions.create(model=model_name,messages=messages,temperature=0.8,top_p=0.8,stream=False,tools=tools)
print(response)
func1_name = response.choices[0].message.tool_calls[0].function.name
func1_args = response.choices[0].message.tool_calls[0].function.arguments
func1_out = eval(f'{func1_name}(**{func1_args})')
print(func1_out)messages.append({'role': 'assistant','content': response.choices[0].message.content
})
messages.append({'role': 'environment','content': f'3+5={func1_out}','name': 'plugin'
})
response = client.chat.completions.create(model=model_name,messages=messages,temperature=0.8,top_p=0.8,stream=False,tools=tools)
print(response)
func2_name = response.choices[0].message.tool_calls[0].function.name
func2_args = response.choices[0].message.tool_calls[0].function.arguments
func2_out = eval(f'{func2_name}(**{func2_args})')
print(func2_out)
按Ctrl+S键保存(Mac用户按Command+S)。
现在让我们输入以下指令运行python代码
python /root/internlm2_5_func.py
相关文章:
LMDeploy 量化部署进阶实践
1 配置LMDeploy环境 1.1 InternStudio开发机创建与环境搭建 打开InternStudio平台,进入如下界面创建环境 在终端中,让我们输入以下指令,来创建一个名为lmdeploy的conda环境,python版本为3.10,创建成功后激活环境并安…...
MFC/C++学习系列之简单记录9——简单加法
MFC/C学习系列之简单记录9——简单加法 前言界面设计控件添加添加变量添加事件 后台代码总结 前言 基本的一些使用已经了解,那么就做个简单的加法来练手吧! 界面设计 控件添加 在工具箱中选择Edit control和Static Text两个控件,分别设置为…...
二分查找题目:两球之间的磁力
文章目录 题目标题和出处难度题目描述要求示例数据范围 解法思路和算法代码复杂度分析 题目 标题和出处 标题:两球之间的磁力 出处:1552. 两球之间的磁力 难度 5 级 题目描述 要求 在代号为地球 C-137 的世界中,Rick 发现如果他将两个…...
OpenCV相机标定与3D重建(28)估计两个三维点集之间的最优平移变换函数estimateTranslation3D()的使用
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 计算两个3D点集之间的最优平移。 它计算 [ x y z ] [ X Y Z ] [ b 1 b 2 b 3 ] \begin{bmatrix} x\\ y\\ z\\ \end{bmatrix} \begin{bmatri…...
UE5仿漫威争锋灵蝶冲刺技能
这两天玩了一下漫威争锋Marvel Rivals,发现是UE5做的,对里面一些角色技能挺感兴趣的,想简单复刻一下技能功能,顺便复习一下学过的知识 首先把摄像机设置调整一下 CameraBoom里搜索lag 把摄像机延迟关掉 ,这样摄像机就…...
CSS盒子模型(溢出隐藏,块级元素和行级元素的居中对齐,元素样式重置)
overflow:值 规定了内容溢出元素框时所发生的事情 visible:内容不会被修剪,会显示在元素框之外,默认值 overflow: visible; hidden:内容会被修剪,溢出内容不可见 overflow: hidden; scroll:内…...
语音增强的损失函数选择
一、最优尺度不变信噪比(OSISNR)损失函数 参考:论文解读 --Optimal scale-invariant signal-to-noise ratio and curriculum learning for monaural multi-spea 最优尺度不变信噪比(OSI-SNR)是一种用于评估信号质量…...
【python自动化六】UI自动化基础-selenium的使用
selenium是目前用得比较多的UI自动化测试框架,支持java,python等多种语言,目前我们就选用selenium来做UI自动化。 1.selenium安装 安装命令 pip install selenium2.selenium的简单使用 本文以chrome浏览器为例,配套selenium中c…...
【习题答案】让您的应用拥有领先的位置服务能力
判断题 1.在使用(逆)地理编码前,需要使用isGeocoderAvailable检查服务状态。 正确(True) 错误(False) 2.当同时配置定位场景和优先级策略时,会优先使用优先级策略。 正确(True) 错误(False) 单选题 1.获取精准定位需要申请哪个权…...
java中list和map区别
在Java中,List和Map是两种不同类型的集合接口,它们用于不同的场景并且具有不同的特性和用途。以下是List和Map的主要区别: 1. 数据结构 List:是一个有序的集合,允许重复元素。它实现了Collection接口,并且…...
java后端传时间戳给前端的三种方式
一. 后端传时间戳给前端的几种方式 使用System.currentTimeMillis() 这是最简单的方式,返回自1970年1月1日(UTC)以来的毫秒数,可以直接传递给前端。 long timestamp1 System.currentTimeMillis();使用java.time.Instant Java…...
【机器学习与数据挖掘实战】案例06:基于Apriori算法的餐饮企业菜品关联分析
【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈机器学习与数据挖掘实战 ⌋ ⌋ ⌋ 机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联…...
oracle: create new database
用database configuration Assistant 引导创建数据库。记得给system,sys 设置自己的口令,便于添加新操作用户。 创建操作用户: -- 别加双引号,否则,无法用 create user geovindu identified by 888888; create user geovin identi…...
混合开发环境---使用编程AI辅助开发Qt
文章目录 [toc]1、说明2、演示视频 1、说明 新时代的浪潮早就已经来临,上不了船的人终将被抛弃,合理使用AI辅助开发、提升效率是大趋势 注意:不要被AI奴隶 合理使用AI辅助编程,十倍提升效率。 大部分的编程AI都有vs code插件&…...
Sigrity SystemSI仿真分析教程文件路径
为了方便读者能够快速上手和学会Sigrity SystemSI 的功能,将Sigrity SystemSI仿真分析教程专栏所有文章对应的实例文件上传至以下路径 https://download.csdn.net/download/weixin_54787054/90171488?spm1001.2014.3001.5503...
【YashanDB知识库】Oracle pipelined函数在YashanDB中的改写
本文内容来自YashanDB官网,原文内容请见 https://www.yashandb.com/newsinfo/7802940.html?templateId1718516 【问题分类】功能使用 【关键字】pipelined 【问题描述】 Oracle PL/SQL中包含pipelined函数的对象迁移到YashanDB会出现不兼容现象。 【问题原因分…...
【开发实战】QT5+ 工业相机 + OpenCV工作流集成演示
学习《OpenCV应用开发:入门、进阶与工程化实践》一书 做真正的OpenCV开发者,从入门到入职,一步到位! 概述 基于OpenCV工作流引擎SDK Qt5 海康工业相机实现了从图像采集到OpenCV工作流运行的完整流程。其中工业相机采图是一个单…...
各种电机原理介绍
1,直流电机 (1)基本原理 直流电动机由直流电驱动电池或外部电源为其供电。在最简单的直流电动机中,定子为永磁体(即红蓝磁体外壳),转子是一个电磁体(即线圈),电流通过碳刷和一个换向器作用于转动的线圈。…...
深入了解 React:从入门到高级应用
深入了解 React:从入门到高级应用 React 是由 Facebook 开发并维护的一个开源 JavaScript 库,用于构建用户界面。自2013年发布以来,React 在前端开发领域迅速崛起,成为最受欢迎的 UI 构建工具之一。无论是小型的单页应用…...
Cglib代理简单案例
Cglib代理简单案例 前言: 1,实现对目标类的增强 2,源码后期补齐 步骤 1,添加cglib依赖 2,编写目标类,书写里面的方法 3,实现MethodInterceptor 接口,重写intercept方法 4ÿ…...
C++实现分布式网络通信框架RPC(3)--rpc调用端
目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...
使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
动态 Web 开发技术入门篇
一、HTTP 协议核心 1.1 HTTP 基础 协议全称 :HyperText Transfer Protocol(超文本传输协议) 默认端口 :HTTP 使用 80 端口,HTTPS 使用 443 端口。 请求方法 : GET :用于获取资源,…...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...
