当前位置: 首页 > news >正文

ARM异常处理 M33

1. ARMv8-M异常类型及其详细解释

ARMv8-M Exception分为两类:预定义系统异常(015)和外部中断(1616+N)。
在这里插入图片描述
各种异常的状态可以通过Status bit查看,获取更信息的异常原因:
在这里插入图片描述

CFSR是由UFSR、BFSR和MMFSR组成:在这里插入图片描述

下面列举HFSR、MMFSR、BFSR、UFSR的详细解释。
1.1 HFSR
在这里插入图片描述
DEBUGEVT, bit [31] Debug event. Indicates when a debug event has occurred.
The possible values of this bit are:
0 No debug event has occurred.
1 Debug event has occurred. The Debug Fault Status Register has been updated.

FORCED, bit [30] Forced. Indicates that a fault with configurable priority has been escalated to a HardFault exception, because
it could not be made active, because of priority, or because it was disabled.
The possible values of this bit are:
0 No priority escalation has occurred.
1 Processor has escalated a configurable-priority exception to HardFault.

VECTTBL, bit [1] Vector table. Indicates when a fault has occurred because of a vector table read error on exception processing.
The possible values of this bit are:
0 No vector table read fault has occurred.
1 Vector table read fault has occurred.

1.2 MMFSR
在这里插入图片描述
MMARVALID, bit [7] MMFAR valid flag. Indicates validity of the MMFAR register.
The possible values of this bit are:
0 MMFAR content not valid.
1 MMFAR content valid.

MLSPERR, bit [5] MemManage lazy state preservation error flag. Records whether a MemManage fault occurred during FP lazy state preservation.
The possible values of this bit are:
0 No MemManage occurred.
1 MemManage occurred.

MSTKERR, bit [4] MemManage stacking error flag. Records whether a derived MemManage fault occurred during exception entry stacking.
The possible values of this bit are:
0 No derived MemManage occurred.
1 Derived MemManage occurred during exception entry.

MUNSTKERR, bit [3] MemManage unstacking error flag. Records whether a derived MemManage fault occurred during exception return unstacking.
The possible values of this bit are:
0 No derived MemManage fault occurred.
1 Derived MemManage fault occurred during excep

DACCVIOL, bit [1] Data access violation flag. Records whether a data access violation has occurred.
The possible values of this bit are:
0 No MemManage fault on data access has occurred.
1 MemManage fault on data access has occurred.

IACCVIOL, bit [0] Instruction access violation. Records whether an instruction related memory access violation has occurred.
The possible values of this bit are:
0 No MemManage fault on instruction access has occurred.
1 MemManage fault on instruction access has occurred.

1.3 BFSR

在这里插入图片描述
BFARVALID, bit [7] BFAR valid. Indicates validity of the contents of the BFAR register.
The possible values of this bit are:
0 BFAR content not valid.
1 BFAR content valid.

LSPERR, bit [5] Lazy state preservation error. Records whether a precise BusFault occurred during FP lazy state preservation.
The possible values of this bit are:
0 No BusFault occurred.
1 BusFault occurred.

STKERR, bit [4] Stack error. Records whether a precise derived BusFault occurred during exception entry stacking.
The possible values of this bit are:
0 No derived BusFault occurred.
1 Derived BusFault occurred during exception entry.

UNSTKERR, bit [3] Unstack error. Records whether a precise derived BusFault occurred during exception return unstacking.
The possible values of this bit are:
0 No derived BusFault occurred.
1 Derived BusFault occurred during exception return.

IMPRECISERR, bit [2] Imprecise error. Records whether an imprecise data access error has occurred.

The possible values of this bit are:
0 No imprecise data access error has occurred.
1 Imprecise data access error has occurred.

PRECISERR, bit [1] Precise error. Records whether a precise data access error has occurred.
The possible values of this bit are:
0 No precise data access error has occurred.
1 Precise data access error has occurred.

IBUSERR, bit [0]
Instruction bus error. Records whether a precise BusFault on an instruction prefetch has occurred.
The possible values of this bit are:
0
No BusFault on instruction prefetch has occurred.
1
A BusFault on an instruction prefetch has occurred.

1.4 UFSR
在这里插入图片描述

DIVBYZERO, bit [9] Divide by zero flag. Sticky flag indicating whether an integer division by zero error has occurred.
The possible values of this bit are:
0 Error has not occurred.
1 Error has occurred.

UNALIGNED, bit [8] Unaligned access flag. Sticky flag indicating whether an unaligned access error has occurred.
The possible values of this bit are:
0 Error has not occurred.
1 Error has occurred.

STKOF, bit [4] Stack overflow flag. Sticky flag indicating whether a stack overflow error has occurred.
The possible values of this bit are:
0 Error has not occurred.
1 Error has occurred.
NOCP, bit [3] No coprocessor flag. Sticky flag indicating whether a coprocessor disabled or not present error has occurred.
The possible values of this bit are:
0 Error has not occurred.
1 Error has occurred.
INVPC, bit [2] Invalid PC flag. Sticky flag indicating whether an integrity check error has occurred.
The possible values of this bit are:
0 Error has not occurred.
1 Error has occurred.

INVSTATE, bit [1] Invalid state flag. Sticky flag indicating whether an EPSR.T, EPSR.IT, or FPSCR.LTPSIZE validity error has occurred.
The possible values of this bit are:
0 Error has not occurred.
1 Error has occurred.

UNDEFINSTR, bit [0] UNDEFINED instruction flag. Sticky flag indicating whether an UNDEFINED instruction error has occurred.
The possible values of this bit are:
0 Error has not occurred.
1 Error has occurred.

2 ARMv8-M ARM中关于异常入口处理和压栈

在ARMv8-M ARM中介绍了异常发生时,硬件所做的一系列操作:
在这里插入图片描述在这里插入图片描述

从中可以看出对R0-R3、R12、LR、XPSR、ReturnAddress进行了压栈操作,最后PC指向异常处理函数。

当异常发生时,压栈的内容和顺序是固定的:XPSR->ReturnAddress->LR->R12->R3->R2->R1->R0。
在这里插入图片描述
这里的LR指的是异常的PC值,是真正的死亡前现场。ReturnAddress是处理器决定的异常后返回地址。

EXC_RETURN
EXC_RETURN代表异常入口时LR的值。
ARMv8-M规格书中关于EXC_RETURN定义如下:
在这里插入图片描述

PREFIX, bits [31:24] Prefix. Indicates that this is an EXC_RETURN value.This field reads as 0b11111111.

S, bit [6] Secure or Non-secure stack.

DCRS, bit [5] Default callee register stacking.

FType, bit [4] Stack frame type. 0 Extended stack frame. 1 Standard stack frame.

Mode, bit [3] Mode. Indicates the Mode that was stacked from. 0 Handler mode. 1 Thread mode.

SPSEL, bit [2] Stack pointer selection. 0 Main stack pointer. 1 Process stack pointer.

ES, bit [0] Exception Secure. 0 Non-secure. 1 Secure.

RETPSR
当异常进入的时候,会将RETPSR的值压栈。
在这里插入图片描述
N, bit [31] Negative condition flag. 0 Result is positive or zero. 1 Result is negative.

Z, bit [30] Zero condition flag.0 Result is nonzero. 1 Result is zero.

C, bit [29] Carry condition flag. 0 No carry occurred, or last bit shifted was clear. 1 Carry occurred, or last bit shifted was set.

V, bit [28] Overflow condition flag. 0 Signed overflow did not occur. 1 Signed overflow occurred.

Q, bit [27] Sticky saturation flag. 0 Saturation or overflow has not occurred since bit was last cleared. 1 Saturation or overflow has occurred since bit was last cleared.

T, bit [24] T32 state. 0 Execution of any instruction generates an INVSTATE UsageFault. 1 Instructions decoded as T32 instructions.

SFPA, bit [20] Secure Floating-point active.

GE, bits [19:16] Greater than or equal flags.

SPREALIGN, bit [9]
0 The stack pointer was 8-byte aligned before exception entry began, no special handling is required on exception return.
1 The stack pointer was only 4-byte aligned before exception entry. The exception entry realigned SP to 8-byte alignment by increasing the stack frame size by 4-bytes.
Exception, bits [8:0] Exception number.

3 异常Handler以及分析

异常的入口是异常向量表,根据异常号调用对应的处理函数:

__isr_vector:.long    __StackTop            /* Top of Stack */.long    Reset_Handler         /* 1. Reset Handler */.long    NMI_Handler           /* 2. NMI Handler */.long    HardFault_Handler     /* 3. Hard Fault Handler */.long    MemManage_Handler     /* 4. MPU Fault Handler */.long    BusFault_Handler      /* 5. Bus Fault Handler */.long    UsageFault_Handler    /* 6. Usage Fault Handler */.long    0                     /* 7. Reserved */.long    0                     /* 8. Reserved */.long    0                     /* 9. Reserved */.long    0                     /* 10. Reserved */.long    SVC_Handler           /* 11. SVCall Handler */.long    DebugMon_Handler      /* 12. Debug Monitor Handler */.long    0                     /* 13. Reserved */.long    PendSV_Handler        /* 14. PendSV Handler */.long    SysTick_Handler       /* 15. SysTick Handler *//* External interrupts *//* The interrupts 0 to 31 */.long    Default_IRQHandler /*16. External Interrupt 0*/.long    Default_IRQHandler

在进入Handler的时候,异常栈顶为包括R0~R3、R12、LR、ReturnAddress、RETPSR寄存器的内容。

下面的寄存器通过判断EXC_RETURN[2]来决定使用msp还是psp:

asm volatile(" tst lr, #4                        \n"--测试EXC_RETURN[2]是否为1,即测试当前StackPointer是MSP(0)还是PSP(1)" ite eq                            \n"--当EXC_RETURN[2]0,则z=1;当EXC_RETURN[2]1,则z=1" mrseq r0, msp                     \n"--当EXC_RETURN[2]0,将msp放入r0。" mrsne r0, psp                     \n"--当EXC_RETURN[2]1,将psp放入r0。"b common_handler_c             \n"--: /* no output */: /* no input */: "r0" /* clobber */
);

其中B和BL区别:

B Label ;程序无条件跳转到标号 Label 处执行。

BL Label ;当程序无条件跳转到标号 Label 处执行时,同时将当前的 PC 值保存到 R14 中。L ;用来区分 分支是否是有带返回的分支指令。

下面以HardFault为例,介绍代码和分析流程。

void HardFault_Handler(void)
{asm volatile(" tst lr, #4                        \n"" ite eq                            \n"" mrseq r0, msp                     \n"" mrsne r0, psp                     \n""b hardfault_handler_c             \n": /* no output */: /* no input */: "r0" /* clobber */);
}void hardfault_handler_c(sContextStateFrame* regs)--传入的参数为msp的值。
{unsigned int hfsr = SCB->HFSR;star_stack_dump(regs);MSG("Cause of Hard Fault:\n");if(hfsr & SCB_HFSR_DEBUGEVT_Msk) {MSG("Debug event has occurred, ");unsigned dfsr = SCB->DFSR;if(dfsr & SCB_DFSR_PMU_Msk)MSG("PMU event.\n");if(dfsr & SCB_DFSR_EXTERNAL_Msk)MSG("External event.\n");if(dfsr & SCB_DFSR_VCATCH_Msk)MSG("Vector Catch event.\n");if(dfsr & SCB_DFSR_DWTTRAP_Msk)MSG("Watchpoint event.\n");if(dfsr & SCB_DFSR_BKPT_Msk)MSG("Breakpoint event.\n");if(dfsr & SCB_DFSR_HALTED_Msk)MSG("Halt or step event.\n");}if(hfsr & SCB_HFSR_FORCED_Msk) {MSG("Processor has escalated a configurable-priority exception to HardFault.\n");aon_system_reset();}if(hfsr & SCB_HFSR_VECTTBL_Msk) {MSG("Vector table read fault has occurred.\n");aon_system_reset();}
}void star_stack_dump(sContextStateFrame* regs)
{unsigned int *stackPtr = NULL;MSG("ExceptionStack(%08x):\n", regs);--输出异常入栈信息:R0~R3、R12、LR、ReturnAddress、XPSR。MSG("R0 = %08x\n", regs->r0);MSG("R1 = %08x\n", regs->r1);MSG("R2 = %08x\n", regs->r2);MSG("R3 = %08x\n", regs->r3);MSG("R12 = %08x\n", regs->r12);MSG("LR = %08x\n", regs->lr);MSG("ReturnAddr = %08x\n", regs->return_address);MSG("PSR = %08x: N(%u) Z(%u) C(%u) V(%u) Q(%u) IT(%u) T(%u) SFPA(%u) GE(%u) SPRealign(%u) ISR(%u) \n", regs->xpsr.w,regs->xpsr.b.N,regs->xpsr.b.Z,regs->xpsr.b.C,regs->xpsr.b.V,regs->xpsr.b.Q,regs->xpsr.b.IT,regs->xpsr.b.T,regs->xpsr.b.SFPA,regs->xpsr.b.GE,regs->xpsr.b.SPREALIGN,regs->xpsr.b.ISR);--RETPSR的几种情况暂未分别分析。MSG("\nStack from 0x%08x in [StackTop(0x%08x), MSPLIM(0x%08x)]:\n", regs, &__StackTop,  __get_MSPLIM());for(stackPtr = (unsigned int *)regs; stackPtr < &__StackTop; stackPtr++ ) {--遍历输出栈内容,方便后续分析。MSG("0x%08x %08x\n", stackPtr, *stackPtr);}
}

触发产生异常:

void fault_test_by_trigger(void) {MSG("%s\n", __func__);SCB->SHCSR |= SCB_SHCSR_HARDFAULTPENDED_Msk;
//    SCB->SHCSR |= SCB_SHCSR_BUSFAULTPENDED_Msk;
//    SCB->SHCSR |= SCB_SHCSR_MEMFAULTPENDED_Msk;
//    SCB->SHCSR |= SCB_SHCSR_USGFAULTPENDED_Msk;
}

结果如下:

fault_test_by_trigger
ExceptionStack(2003FFA8):
R0 = 00000007
R1 = 0000000A
R2 = E000ED00
R3 = 00270000
R12 = 00000000
LR = 000002E7
ReturnAddr = 000002F2
PSR = 69000000: N(0) Z(1) C(1) V(0) Q(1) IT(0) T(1) SFPA(0) GE(0) SPRealign(0) ISR(0) Stack from 0x2003FFA8 in [StackTop(0x2003FFF0), MSPLIM(0x2003F3F0)]:
0x2003FFA8 00000007
0x2003FFAC 0000000A
0x2003FFB0 E000ED00
0x2003FFB4 00270000
0x2003FFB8 00000000
0x2003FFBC 000002E7
0x2003FFC0 000002F2
0x2003FFC4 69000000--到此都为异常入栈内容。
0x2003FFC8 0000E4E0
0x2003FFCC 0000E4E0
0x2003FFD0 0000E4E0
0x2003FFD4 0000C0CC
0x2003FFD8 00000000
0x2003FFDC 00000000
0x2003FFE0 00000000
0x2003FFE4 00000000
0x2003FFE8 00000000
0x2003FFEC 0000B6C1
Cause of Hard Fault:

从上述log可知三个地址0x000002E7、0x000002F2、0x0000B6C1。

使用addrline工具分析对应符号表,

arm-linux-gnueabihf-addr2line -e main.elf -a -f 0x000002E7 0x000002F2 0x0000B6C1

结果如下:

0x000002e7
fault_test_by_trigger--异常栈中的LR,对应异常现场PC值。是导致问题产生的原因。
xxx.c:34
0x000002f2
main--这是异常退出后处理器PC指向的地方,即退出异常后将要执行的代码。
xxx.c:66
0x0000b6c1
Reset_Handler--栈回溯部分。
xxx.S:284

基本可以得到函数调用关系。

引用链接:https://www.cnblogs.com/arnoldlu/p/16199437.html

相关文章:

ARM异常处理 M33

1. ARMv8-M异常类型及其详细解释 ARMv8-M Exception分为两类&#xff1a;预定义系统异常(015)和外部中断(1616N)。 各种异常的状态可以通过Status bit查看&#xff0c;获取更信息的异常原因&#xff1a; CFSR是由UFSR、BFSR和MMFSR组成&#xff1a; 下面列举HFSR、MMFSR、…...

(补)算法刷题Day24: BM61 矩阵最长递增路径

题目链接 思路 方法一&#xff1a;dfs暴力回溯 使用原始used数组4个方向遍历框架 &#xff0c; 全局添加一个最大值判断最大的路径长度。 方法二&#xff1a;加上dp数组记忆的优雅回溯 抛弃掉used数组&#xff0c;使用dp数组来记忆遍历过的节点的最长递增路径长度。每遍历到已…...

探索 Bokeh:轻松创建交互式数据可视化的强大工具

探索 Bokeh&#xff1a;轻松创建交互式数据可视化的强大工具 在数据科学和数据分析领域&#xff0c;交互式数据可视化是一项不可或缺的技能。Bokeh 是一个强大的 Python 库&#xff0c;它可以帮助我们快速构建高质量的交互式图表和仪表盘&#xff0c;同时兼具高性能和灵活性。…...

【Rust自学】6.1. 定义枚举

喜欢的话别忘了点赞、收藏加关注哦&#xff0c;对接下来的教程有兴趣的可以关注专栏。谢谢喵&#xff01;(&#xff65;ω&#xff65;) 6.1.1. 什么是枚举 枚举允许我们列举所有可能的值来定义一个类型。这与其他编程语言中的枚举类似&#xff0c;但 Rust 的枚举更加灵活和强…...

【Java基础面试题035】什么是Java泛型的上下界限定符?

回答重点 Java泛型的上下界限定符用于对泛型类型参数进行范围限制&#xff0c;主要有上界限定符和下届限定符。 1&#xff09;上界限定符 (? extends T)&#xff1a; 定义&#xff1a;通配符?的类型必须是T或者T的子类&#xff0c;保证集合元素一定是T或者T的子类作用&…...

0基础学前端系列 -- 深入理解 HTML 布局

在现代网页设计中&#xff0c;布局是至关重要的一环。良好的布局不仅能提升用户体验&#xff0c;还能使内容更具可读性和美观性。HTML&#xff08;超文本标记语言&#xff09;结合 CSS&#xff08;层叠样式表&#xff09;为我们提供了多种布局方式。本文将详细介绍流式布局、Fl…...

【python高级】342-TCP服务器开发流程

CS模式&#xff1a;客户端-服务端模式 TCP客户端开发流程介绍&#xff08;五步&#xff09;&#xff08;C端&#xff09; 1.创建客户端套接字对象 2.和服务端套接字建立连接 3.发送数据 4.接收数据 5.关闭客户端套接字 TCP服务端开发流程&#xff08;七步&#xff09;&#xf…...

《计算机组成及汇编语言原理》阅读笔记:p48-p81

《计算机组成及汇编语言原理》学习第 4 天&#xff0c;p48-p81 总结&#xff0c;总计 34 页。 一、技术总结 1.CISC vs RISC p49&#xff0c; complex instruction set computing For example, a complex instruction set computing (CISC) chip may be able to move a lar…...

AI在传统周公解梦中的技术实践与应用

本文深入探讨了人工智能在传统周公解梦领域的技术实践与应用。首先介绍了传统周公解梦的背景与局限性&#xff0c;随后详细阐述了 AI 技术如何应用于梦境数据的采集、整理与分析&#xff0c;包括自然语言处理技术对梦境描述的理解&#xff0c;机器学习算法构建解梦模型以及深度…...

GIS数据处理/程序/指导,街景百度热力图POI路网建筑物AOI等

简介其他数据处理/程序/指导&#xff01;&#xff01;&#xff01;&#xff08;1&#xff09;街景数据获取&#xff08;2&#xff09;街景语义分割后像素提取&#xff0c;指标计算代码&#xff08;绿视率&#xff0c;天空开阔度、视觉熵/景观多样性等&#xff09;&#xff08;3…...

ssr实现方案

目录 序言 一、流程 二、前端要做的事情 三、节点介绍 四、总结 序言 本文不是详细的实现过程&#xff0c;是让你最快最直接的理解ssr的真正实现方法&#xff0c;有前端经验的同学&#xff0c;能够很好的理解过程&#xff0c;细节根据具体项目实现 一、前端要做的事情 1.…...

手动修改nginx-rtmp模块,让nginx-rtmp-module支持LLHLS

文章目录 1. 背景2. 开发环境搭建2.1 ffmpeg在ubuntu上安装2.2 nginx-rtmp-module在ubuntu上安装2.3 安装vscode环境2. 修改nginx-rtmp-module2.1 主要更新内容2.2 新增配置项2.3 代码更新3. LLHLS验证方法3.1 配置验证3.2 功能验证4. 注意事项5. 已知问题6. 后续计划1. 背景 …...

gitee别人仓库再上传自己仓库

一、新建一个自己的Git仓库 如果没有注册账号的朋友&#xff0c;可以先去注册一个Gitee的账号&#xff0c;用于管理自己的代码特别好用&#xff01;&#xff01;&#xff01; 接下来就是在gitee上新建一个自己的仓库&#xff0c;如下图所示 二、右建 Git Bush Here删除.git文件…...

create-react-app 创建react项目报错 ERESOLVE unable to resolve dependency tree

会报下面这样一个错误&#xff0c;这个错误以前是没有的&#xff0c;最近才出现这个错误。这个非常的蛋疼&#xff0c;意思是testing-library这个库的版本需要react18&#xff0c;但现在安装的是react19。 create-react-app的github是有这个issue的&#xff0c;但官方好像没给…...

从git上下载的项目不完整,关于git lfs

文章目录 问题一、git lfs是什么&#xff1f;二、如何获取git lfs中的文件1.安装 Git LFS2.下载文件 问题 在git上下载的项目无法执行,打开相关文件后发现如下内容: git lfs pull version https://git-lfs.github.com/spec/v1 oid sha256:00920b6723bb39321eea748fd96279f8a…...

sqlite3,一个轻量级的 C++ 数据库库!

宝子们&#xff0c;今天咱来唠唠 sqlite3 这个超棒的轻量级 C 数据库库。它就像是一个小巧但功能齐全的“数据仓库”&#xff0c;能帮咱们轻松地存储、查询和管理数据&#xff0c;无论是开发小型的桌面应用&#xff0c;还是做一些简单的数据处理程序&#xff0c;它都能派上大用…...

Pytorch | 从零构建ParNet/Non-Deep Networks对CIFAR10进行分类

Pytorch | 从零构建ParNet/Non-Deep Networks对CIFAR10进行分类 CIFAR10数据集ParNet架构特点优势应用 ParNet结构代码详解结构代码代码详解SSEParNetBlock 类DownsamplingBlock 类FusionBlock 类ParNet 类 训练过程和测试结果代码汇总parnet.pytrain.pytest.py 前面文章我们构…...

验证 Dijkstra 算法程序输出的奥秘

一、引言 Dijkstra 算法作为解决图中单源最短路径问题的经典算法,在网络路由、交通规划、资源分配等众多领域有着广泛应用。其通过不断选择距离源节点最近的未访问节点,逐步更新邻居节点的最短路径信息,以求得从源节点到其他所有节点的最短路径。在实际应用中,确保 Dijkst…...

二叉树的最小深度

最小深度思路解析: 与求最大深度相比,求最小深度就要简单很多,从上向下访问,只要访问到一个叶节点,证明已经到达了与根节点距离最近的叶节点处,此叶节点的深度即为最小深度.借助队列,如果当前节点为叶节点,则返回该节点的深度为最终结果;如果当前节点不满足上述判断且不为空节…...

C#+OpenCv深度学习开发(常用模型汇总)

在使用 OpenCvSharp 结合深度学习进行机器视觉开发时&#xff0c;有许多现成的模型可以使用。以下是一些常用的深度学习模型&#xff0c;适用于不同的机器视觉任务&#xff0c;包括物体检测、图像分类和分割等。 使用示例 在 OpenCvSharp 中加载和使用这些模型的基本示例&…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间&#xff0c; 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点&#xff0c;不需要开启数据库闪回。…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

安卓基础(Java 和 Gradle 版本)

1. 设置项目的 JDK 版本 方法1&#xff1a;通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分&#xff0c;设置 Gradle JDK 方法2&#xff1a;通过 Settings File → Settings... (或 CtrlAltS)…...

通过MicroSip配置自己的freeswitch服务器进行调试记录

之前用docker安装的freeswitch的&#xff0c;启动是正常的&#xff0c; 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...

云原生周刊:k0s 成为 CNCF 沙箱项目

开源项目推荐 HAMi HAMi&#xff08;原名 k8s‑vGPU‑scheduler&#xff09;是一款 CNCF Sandbox 级别的开源 K8s 中间件&#xff0c;通过虚拟化 GPU/NPU 等异构设备并支持内存、计算核心时间片隔离及共享调度&#xff0c;为容器提供统一接口&#xff0c;实现细粒度资源配额…...

Java并发编程实战 Day 11:并发设计模式

【Java并发编程实战 Day 11】并发设计模式 开篇 这是"Java并发编程实战"系列的第11天&#xff0c;今天我们聚焦于并发设计模式。并发设计模式是解决多线程环境下常见问题的经典解决方案&#xff0c;它们不仅提供了优雅的设计思路&#xff0c;还能显著提升系统的性能…...