当前位置: 首页 > news >正文

视频汇聚融合云平台Liveweb一站式解决视频资源管理痛点

随着5G技术的广泛应用,各领域都在通信技术加持下通过海量终端设备收集了大量视频、图像等物联网数据,并通过人工智能、大数据、视频监控等技术方式来让我们的世界更安全、更高效。然而,随着数字化建设和生产经营管理活动的长期开展,海量感知数据日积月累,这为视频资源的管理带来了巨大的挑战,逐渐出现一些新的亟需解决的难题,主要包括以下几个方面:

1、接入难:不同厂家、不用系统、不同格式的各类数据,分散在海量的终端设备。既有摄像头采集的各类视频数据,又有各类传感器产生的物联网数据,且传输协议不同,给统一接入带来挑战。

2、存储难:终端设备产生的海量视频数据,给中心端存储带来极大挑战。

3、管理难:终端设备老旧后,故障率高、在线率低,想要实现远程控制、远程升级并非易事。尤其是在油气、风电等能源行业,终端设备往往地处偏远,远程调阅、远程管理的需求很高。

4、终端展示难:信息资源的展示终端类型越来越丰富,访问资源的终端从普通电脑发展到目前各式掌上电脑终端、移动手机终端、电视终端、触摸大屏终端等,对应用系统的支持能力提出较高要求。

5、第三方接入难:数据融合共享时代,各部门对第三方应用的需求越来越高,老旧系统无法为其他第三方应用的接入、集成和能力输出提供成熟的技术支持,无法通过调用 API 接口、集成 SDK 等方式,按需、按量的为第三方应用的开发者提供技术支持。

针对以上几个难点,基于Liveweb视频融合云平台的海量视频接入、汇聚与管理、处理及分发等视频能力,可构建视频汇聚平台,将原来分散在不同部门、不同系统的视频资源进行整合、汇聚、治理,结合各应用场景,实现资源共享、联动共管;同时可接入汇聚区直机关、区级重点单位以及辖区内需联网的公共区域视频资源、社会单位视频资源和社会群众自建视频资源等不同类型、不同链路、不同技术要求的社会视频监控资源,做到数据先汇聚,再分享,将零散的社会视频汇聚到一个平台,平台开放服务接口,实现数据共享,针对性解决视频资源管理难题。

平台功能架构主要分为三个部分:

 1、数据采集:主要是实现平台整体底层的搭建,通过平台管理中心完成从前端到底层的基础业务对接,形成基础视频数据资源采集、管理能力。

2、数据服务:将平台的业务能力通过封装API 或 SDK 的形式赋能第三方应用,实现更多的应用集成,通过标准化的平台流媒体业务形成更多应用级别业务数据的沉淀,并对外提供流媒体标准服务。

 3、数据应用:根据公司的生产、管理的业务特性,提供各种视频资源直播、点播、分发等应用,支持基于视频资源实现多主题、多场景大数据智能分析,满足生产、管理等业务领域视频数据资源的深化应用。

与传统视频监控系统相比,Liveweb视频融合云平台具有以下技术优势:

1、兼容性强 

支持兼容不同品牌、不同型号的视频平台系统,解决技术兼容性问题,能实现非国标设备国标化处理,对异构视频格式和信令格式进行国标化转换,从而将社会视频资源接入数据大平台,消除数据孤岛,实现数据互联互通、共享对接。

2、云端录像、检索与回放、存储

支持7*24h录像,提供录像、检索、回放、云存储等功能,可对接入单位的视频进行录像备份,实现数据的分布式存储和备份,保障了视频资源的可靠性、安全性及可追溯性;同时可充分解决视频容量大、存储难等问题。

3、快速集成与开发

平台可对外提供统一的服务API接口,实现连接设备、连接数据、连接应用,便于第三方平台快速集成。在业务上能满足多领域行业安保与大数据库建设应用场景,满足不同职能部门业务拓展需求。

4、一体化综合管理

平台集采集、汇聚、编码、管理、存储、分发等高效的基础视频能力为一体,为各平台模块、子系统提供稳定流畅的视频数据服务,进而实现基于视频的看、查、管、控、用等功能,有利于对社会视频资源前端点位进行规范化管理。


 

相关文章:

视频汇聚融合云平台Liveweb一站式解决视频资源管理痛点

随着5G技术的广泛应用,各领域都在通信技术加持下通过海量终端设备收集了大量视频、图像等物联网数据,并通过人工智能、大数据、视频监控等技术方式来让我们的世界更安全、更高效。然而,随着数字化建设和生产经营管理活动的长期开展&#xff0…...

(aaai2025) FD2-Net: Frequency-Driven Feature Decomposition Network

论文:FD2-Net: Frequency-Driven Feature Decomposition Network for Infrared-Visible Object Detection 代码:https://github.com/like413/FD2-Net 这个论文核心思想认为:多源融合目标检测方法忽略了频率上的互补特征,如可见光图…...

深度学习之目标检测——RCNN

Selective Search 背景:事先不知道需要检测哪个类别,且候选目标存在层级关系与尺度关系 常规解决方法:穷举法,在原始图片上进行不同尺度不同大小的滑窗,获取每个可能的位置 弊端:计算量大,且尺度不能兼顾 Selective …...

2014年IMO第3题

在凸四边形 A B C D ABCD ABCD 中, ∠ A B C = ∠ A D C = π 2 \angle ABC=\angle ADC=\frac{\pi}{2} ∠ABC=∠ADC=2π​, H H H 为 A A A 在 B D BD BD 上的投影, 在边 A B AB AB 上有一点 S S S, ∠ C H S − ∠ C S B = π 2 \angle CHS-\angle CSB=\frac{\pi}{2} …...

国高材服务 | 高分子结晶动力学表征——高低温热台偏光显微镜

众所周知,聚合物制品的实际使用性能(如光学透明性、硬度、模量等)与材料内部的结晶形态、晶粒大小及完善程度有着密切的联系,因此,对聚合物结晶形态等的研究具有重要的理论和实际意义。 随着结晶条件的不用&#xff0c…...

跨站请求伪造之基本介绍

一.基本概念 1.定义 跨站请求伪造(Cross - Site Request Forgery,缩写为 CSRF)漏洞是一种网络安全漏洞。它是指攻击者通过诱导用户访问一个恶意网站,利用用户在被信任网站(如银行网站、社交网站等)的登录状…...

Hadoop集群(HDFS集群、YARN集群、MapReduce​计算框架)

一、 简介 Hadoop主要在分布式环境下集群机器,获取海量数据的处理能力,实现分布式集群下的大数据存储和计算。 其中三大核心组件: HDFS存储分布式文件存储、YARN分布式资源管理、MapReduce分布式计算。 二、工作原理 2.1 HDFS集群 Web访问地址&…...

单元测试(UT,C++版)经验总结(gtest+gmock)

最近做了一段测试工作,其中包括单元测试,编程语言是C。这里提供一些基本知识总结,方便入门单元测试。 1.单元测试介绍 单元测试(Unit Testing, 简称UT)是软件测试的一种方法,目的是通过对单个软件组件&am…...

Mysql高级部分总结(二)

MySQL的内部日志 binlog记载的是update/delete/insert这样的SQL语句,而redo log记载的是物理修改的内容(xxxx页修改了xxx)。 binlog无论MySQL用什么引擎,都会有,而redo log是MySQL的InnoDB引擎所产生的。 redo log事务开始的时候,就开始记录每次的变更信息,而binlog是在…...

纠正一下网络管理

先找到那个hrStorageType 这里我的值是 后面的值.1.3.6.1.2.1.25.2.1.4代表磁盘 我只有2个盘 C盘和D盘 所以这里只有2个 你们有E盘F盘的话 这里会多 .1.3.6.1.2.1.25.2.1.2 代表内存 .1.3.6.1.2.1.25.2.1.2 前面是 hrStorageType.4 所以 这里面.4后缀是表示内存的 之前…...

homebrew,gem,cocoapod 换源,以及安装依赖

安装homebrew /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)" 再按照成功提示配置环境变量 ruby 更新ruby到最新 brew install ruby 如果安装了会自动升级 安装完成后根据提示配置环境变量 再执行命令使其生效 s…...

Java字符串的|分隔符转List实现方案

字符串处理 问题背景代码实现代码优化原因分析实现方案 注意事项异常处理Maven未识别异常 问题背景 在项目组对账流程中,接收对方系统的对账文件,数据以|为分隔符,读取文件内容,分条入库。 代码实现 Java中将字符串转给list&am…...

Kafka可视化工具 Offset Explorer (以前叫Kafka Tool)

数据的存储是基于 主题(Topic) 和 分区(Partition) 的 Kafka是一个高可靠性的分布式消息系统,广泛应用于大规模数据处理和实时, 为了更方便地管理和监控Kafka集群,开发人员和运维人员经常需要使用可视化工具…...

DeepWalk 原理详解

概述: DeepWalk 是一种流行的图嵌入方法,用于学习图结构数据中节点的低维表示。它通过将图的节点视作序列数据,利用自然语言处理中的技术(类似于word2vec算法)来捕捉节点间的关系,可以帮助我们理解和利用图…...

GitLab安装|备份数据|迁移数据及使用教程

作者: 宋发元 最后更新时间:2024-12-24 GitLab安装及使用教程 官方教程 https://docs.gitlab.com/ee/install/docker.html Docker安装GitLab 宿主机创建容器持久化目录卷 mkdir -p /docker/gitlab/{config,data,logs}拉取GitLab镜像 docker pull gi…...

嵌入式linux驱动框架 I2C系统驱动程序模型分析

引言:在嵌入式 Linux 系统中,I2C(Inter-Integrated Circuit)是一种常用的通信协议,用于连接低速设备(如传感器、显示器、存储器等)与主控制器。I2C 系统驱动程序模型通过层次化的设计&#xff0…...

深度学习实验十七 优化算法比较

目录 一、优化算法的实验设定 1.1 2D可视化实验(被优化函数为) 1.2 简单拟合实验 二、学习率调整 2.1 AdaGrad算法 2.2 RMSprop算法 三、梯度修正估计 3.1 动量法 3.2 Adam算法 四、被优化函数变为的2D可视化 五、不同优化器的3D可视化对比 …...

一个双非选手的秋招总结

个人bg介绍 25届双非本硕(非杭电深大,垫底双非),两段实习经历,本科没学过Java,有c语言和408基础;2023年10月份中途转语言,Java速成选手。 战绩总结:实习秋招面试总论次…...

如何提高永磁电动机的节电效果

在现代工业和家庭应用中,永磁电动机因其优越的性能和节能特性,逐渐成为主流选择。随着能源日益紧缺和环境问题的日益严重,寻求高效的电动机节能方案显得尤为重要。 一、永磁电动机的基本原理 永磁电动机的核心是永磁体,这些永磁…...

在一个服务器上抓取 Docker 镜像并在另一个服务器上运行

要在一个服务器上抓取 Docker 镜像并在另一个服务器上运行,您可以按照以下步骤进行操作: 1. 保存 Docker 镜像 在源服务器上,您可以使用 docker save 命令将 Docker 镜像保存为一个 tar 文件。例如,如果您的镜像名称是 face_det…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...

三体问题详解

从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持,不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...