视频汇聚融合云平台Liveweb一站式解决视频资源管理痛点
随着5G技术的广泛应用,各领域都在通信技术加持下通过海量终端设备收集了大量视频、图像等物联网数据,并通过人工智能、大数据、视频监控等技术方式来让我们的世界更安全、更高效。然而,随着数字化建设和生产经营管理活动的长期开展,海量感知数据日积月累,这为视频资源的管理带来了巨大的挑战,逐渐出现一些新的亟需解决的难题,主要包括以下几个方面:
1、接入难:不同厂家、不用系统、不同格式的各类数据,分散在海量的终端设备。既有摄像头采集的各类视频数据,又有各类传感器产生的物联网数据,且传输协议不同,给统一接入带来挑战。
2、存储难:终端设备产生的海量视频数据,给中心端存储带来极大挑战。
3、管理难:终端设备老旧后,故障率高、在线率低,想要实现远程控制、远程升级并非易事。尤其是在油气、风电等能源行业,终端设备往往地处偏远,远程调阅、远程管理的需求很高。
4、终端展示难:信息资源的展示终端类型越来越丰富,访问资源的终端从普通电脑发展到目前各式掌上电脑终端、移动手机终端、电视终端、触摸大屏终端等,对应用系统的支持能力提出较高要求。
5、第三方接入难:数据融合共享时代,各部门对第三方应用的需求越来越高,老旧系统无法为其他第三方应用的接入、集成和能力输出提供成熟的技术支持,无法通过调用 API 接口、集成 SDK 等方式,按需、按量的为第三方应用的开发者提供技术支持。

针对以上几个难点,基于Liveweb视频融合云平台的海量视频接入、汇聚与管理、处理及分发等视频能力,可构建视频汇聚平台,将原来分散在不同部门、不同系统的视频资源进行整合、汇聚、治理,结合各应用场景,实现资源共享、联动共管;同时可接入汇聚区直机关、区级重点单位以及辖区内需联网的公共区域视频资源、社会单位视频资源和社会群众自建视频资源等不同类型、不同链路、不同技术要求的社会视频监控资源,做到数据先汇聚,再分享,将零散的社会视频汇聚到一个平台,平台开放服务接口,实现数据共享,针对性解决视频资源管理难题。
平台功能架构主要分为三个部分:
1、数据采集:主要是实现平台整体底层的搭建,通过平台管理中心完成从前端到底层的基础业务对接,形成基础视频数据资源采集、管理能力。
2、数据服务:将平台的业务能力通过封装API 或 SDK 的形式赋能第三方应用,实现更多的应用集成,通过标准化的平台流媒体业务形成更多应用级别业务数据的沉淀,并对外提供流媒体标准服务。
3、数据应用:根据公司的生产、管理的业务特性,提供各种视频资源直播、点播、分发等应用,支持基于视频资源实现多主题、多场景大数据智能分析,满足生产、管理等业务领域视频数据资源的深化应用。
与传统视频监控系统相比,Liveweb视频融合云平台具有以下技术优势:
1、兼容性强
支持兼容不同品牌、不同型号的视频平台系统,解决技术兼容性问题,能实现非国标设备国标化处理,对异构视频格式和信令格式进行国标化转换,从而将社会视频资源接入数据大平台,消除数据孤岛,实现数据互联互通、共享对接。
2、云端录像、检索与回放、存储
支持7*24h录像,提供录像、检索、回放、云存储等功能,可对接入单位的视频进行录像备份,实现数据的分布式存储和备份,保障了视频资源的可靠性、安全性及可追溯性;同时可充分解决视频容量大、存储难等问题。
3、快速集成与开发
平台可对外提供统一的服务API接口,实现连接设备、连接数据、连接应用,便于第三方平台快速集成。在业务上能满足多领域行业安保与大数据库建设应用场景,满足不同职能部门业务拓展需求。
4、一体化综合管理
平台集采集、汇聚、编码、管理、存储、分发等高效的基础视频能力为一体,为各平台模块、子系统提供稳定流畅的视频数据服务,进而实现基于视频的看、查、管、控、用等功能,有利于对社会视频资源前端点位进行规范化管理。

相关文章:
视频汇聚融合云平台Liveweb一站式解决视频资源管理痛点
随着5G技术的广泛应用,各领域都在通信技术加持下通过海量终端设备收集了大量视频、图像等物联网数据,并通过人工智能、大数据、视频监控等技术方式来让我们的世界更安全、更高效。然而,随着数字化建设和生产经营管理活动的长期开展࿰…...
(aaai2025) FD2-Net: Frequency-Driven Feature Decomposition Network
论文:FD2-Net: Frequency-Driven Feature Decomposition Network for Infrared-Visible Object Detection 代码:https://github.com/like413/FD2-Net 这个论文核心思想认为:多源融合目标检测方法忽略了频率上的互补特征,如可见光图…...
深度学习之目标检测——RCNN
Selective Search 背景:事先不知道需要检测哪个类别,且候选目标存在层级关系与尺度关系 常规解决方法:穷举法,在原始图片上进行不同尺度不同大小的滑窗,获取每个可能的位置 弊端:计算量大,且尺度不能兼顾 Selective …...
2014年IMO第3题
在凸四边形 A B C D ABCD ABCD 中, ∠ A B C = ∠ A D C = π 2 \angle ABC=\angle ADC=\frac{\pi}{2} ∠ABC=∠ADC=2π, H H H 为 A A A 在 B D BD BD 上的投影, 在边 A B AB AB 上有一点 S S S, ∠ C H S − ∠ C S B = π 2 \angle CHS-\angle CSB=\frac{\pi}{2} …...
国高材服务 | 高分子结晶动力学表征——高低温热台偏光显微镜
众所周知,聚合物制品的实际使用性能(如光学透明性、硬度、模量等)与材料内部的结晶形态、晶粒大小及完善程度有着密切的联系,因此,对聚合物结晶形态等的研究具有重要的理论和实际意义。 随着结晶条件的不用,…...
跨站请求伪造之基本介绍
一.基本概念 1.定义 跨站请求伪造(Cross - Site Request Forgery,缩写为 CSRF)漏洞是一种网络安全漏洞。它是指攻击者通过诱导用户访问一个恶意网站,利用用户在被信任网站(如银行网站、社交网站等)的登录状…...
Hadoop集群(HDFS集群、YARN集群、MapReduce计算框架)
一、 简介 Hadoop主要在分布式环境下集群机器,获取海量数据的处理能力,实现分布式集群下的大数据存储和计算。 其中三大核心组件: HDFS存储分布式文件存储、YARN分布式资源管理、MapReduce分布式计算。 二、工作原理 2.1 HDFS集群 Web访问地址&…...
单元测试(UT,C++版)经验总结(gtest+gmock)
最近做了一段测试工作,其中包括单元测试,编程语言是C。这里提供一些基本知识总结,方便入门单元测试。 1.单元测试介绍 单元测试(Unit Testing, 简称UT)是软件测试的一种方法,目的是通过对单个软件组件&am…...
Mysql高级部分总结(二)
MySQL的内部日志 binlog记载的是update/delete/insert这样的SQL语句,而redo log记载的是物理修改的内容(xxxx页修改了xxx)。 binlog无论MySQL用什么引擎,都会有,而redo log是MySQL的InnoDB引擎所产生的。 redo log事务开始的时候,就开始记录每次的变更信息,而binlog是在…...
纠正一下网络管理
先找到那个hrStorageType 这里我的值是 后面的值.1.3.6.1.2.1.25.2.1.4代表磁盘 我只有2个盘 C盘和D盘 所以这里只有2个 你们有E盘F盘的话 这里会多 .1.3.6.1.2.1.25.2.1.2 代表内存 .1.3.6.1.2.1.25.2.1.2 前面是 hrStorageType.4 所以 这里面.4后缀是表示内存的 之前…...
homebrew,gem,cocoapod 换源,以及安装依赖
安装homebrew /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Homebrew.sh)" 再按照成功提示配置环境变量 ruby 更新ruby到最新 brew install ruby 如果安装了会自动升级 安装完成后根据提示配置环境变量 再执行命令使其生效 s…...
Java字符串的|分隔符转List实现方案
字符串处理 问题背景代码实现代码优化原因分析实现方案 注意事项异常处理Maven未识别异常 问题背景 在项目组对账流程中,接收对方系统的对账文件,数据以|为分隔符,读取文件内容,分条入库。 代码实现 Java中将字符串转给list&am…...
Kafka可视化工具 Offset Explorer (以前叫Kafka Tool)
数据的存储是基于 主题(Topic) 和 分区(Partition) 的 Kafka是一个高可靠性的分布式消息系统,广泛应用于大规模数据处理和实时, 为了更方便地管理和监控Kafka集群,开发人员和运维人员经常需要使用可视化工具…...
DeepWalk 原理详解
概述: DeepWalk 是一种流行的图嵌入方法,用于学习图结构数据中节点的低维表示。它通过将图的节点视作序列数据,利用自然语言处理中的技术(类似于word2vec算法)来捕捉节点间的关系,可以帮助我们理解和利用图…...
GitLab安装|备份数据|迁移数据及使用教程
作者: 宋发元 最后更新时间:2024-12-24 GitLab安装及使用教程 官方教程 https://docs.gitlab.com/ee/install/docker.html Docker安装GitLab 宿主机创建容器持久化目录卷 mkdir -p /docker/gitlab/{config,data,logs}拉取GitLab镜像 docker pull gi…...
嵌入式linux驱动框架 I2C系统驱动程序模型分析
引言:在嵌入式 Linux 系统中,I2C(Inter-Integrated Circuit)是一种常用的通信协议,用于连接低速设备(如传感器、显示器、存储器等)与主控制器。I2C 系统驱动程序模型通过层次化的设计࿰…...
深度学习实验十七 优化算法比较
目录 一、优化算法的实验设定 1.1 2D可视化实验(被优化函数为) 1.2 简单拟合实验 二、学习率调整 2.1 AdaGrad算法 2.2 RMSprop算法 三、梯度修正估计 3.1 动量法 3.2 Adam算法 四、被优化函数变为的2D可视化 五、不同优化器的3D可视化对比 …...
一个双非选手的秋招总结
个人bg介绍 25届双非本硕(非杭电深大,垫底双非),两段实习经历,本科没学过Java,有c语言和408基础;2023年10月份中途转语言,Java速成选手。 战绩总结:实习秋招面试总论次…...
如何提高永磁电动机的节电效果
在现代工业和家庭应用中,永磁电动机因其优越的性能和节能特性,逐渐成为主流选择。随着能源日益紧缺和环境问题的日益严重,寻求高效的电动机节能方案显得尤为重要。 一、永磁电动机的基本原理 永磁电动机的核心是永磁体,这些永磁…...
在一个服务器上抓取 Docker 镜像并在另一个服务器上运行
要在一个服务器上抓取 Docker 镜像并在另一个服务器上运行,您可以按照以下步骤进行操作: 1. 保存 Docker 镜像 在源服务器上,您可以使用 docker save 命令将 Docker 镜像保存为一个 tar 文件。例如,如果您的镜像名称是 face_det…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
#Uniapp篇:chrome调试unapp适配
chrome调试设备----使用Android模拟机开发调试移动端页面 Chrome://inspect/#devices MuMu模拟器Edge浏览器:Android原生APP嵌入的H5页面元素定位 chrome://inspect/#devices uniapp单位适配 根路径下 postcss.config.js 需要装这些插件 “postcss”: “^8.5.…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
[ACTF2020 新生赛]Include 1(php://filter伪协议)
题目 做法 启动靶机,点进去 点进去 查看URL,有 ?fileflag.php说明存在文件包含,原理是php://filter 协议 当它与包含函数结合时,php://filter流会被当作php文件执行。 用php://filter加编码,能让PHP把文件内容…...
pycharm 设置环境出错
pycharm 设置环境出错 pycharm 新建项目,设置虚拟环境,出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...
【Kafka】Kafka从入门到实战:构建高吞吐量分布式消息系统
Kafka从入门到实战:构建高吞吐量分布式消息系统 一、Kafka概述 Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发,后成为Apache顶级项目。它被设计用于高吞吐量、低延迟的消息处理,能够处理来自多个生产者的海量数据,并将这些数据实时传递给消费者。 Kafka核心特…...
五、jmeter脚本参数化
目录 1、脚本参数化 1.1 用户定义的变量 1.1.1 添加及引用方式 1.1.2 测试得出用户定义变量的特点 1.2 用户参数 1.2.1 概念 1.2.2 位置不同效果不同 1.2.3、用户参数的勾选框 - 每次迭代更新一次 总结用户定义的变量、用户参数 1.3 csv数据文件参数化 1、脚本参数化 …...
Linux系统:进程间通信-匿名与命名管道
本节重点 匿名管道的概念与原理匿名管道的创建命名管道的概念与原理命名管道的创建两者的差异与联系命名管道实现EchoServer 一、管道 管道(Pipe)是一种进程间通信(IPC, Inter-Process Communication)机制,用于在不…...
【Axure高保真原型】图片列表添加和删除图片
今天和大家分享图片列表添加和删除图片的原型模板,效果包括: 点击图片列表的加号可以显示图片选择器,选择里面的图片; 选择图片后点击添加按钮,可以将该图片添加到图片列表; 鼠标移入图片列表的图片&…...
