当前位置: 首页 > news >正文

机器学习(二)-简单线性回归

文章目录

    • 1. 简单线性回归理论
    • 2. python通过简单线性回归预测房价
      • 2.1 预测数据
      • 2.2导入标准库
      • 2.3 导入数据
      • 2.4 划分数据集
      • 2.5 导入线性回归模块
      • 2.6 对测试集进行预测
      • 2.7 计算均方误差 J
      • 2.8 计算参数 w0、w1
      • 2.9 可视化训练集拟合结果
      • 2.10 可视化测试集拟合结果
      • 2.11 保存模型
      • 2.12 加载模型并预测

在机器学习和统计学中,简单线性回归是一种基础而强大的工具,用于建立自变量与因变量之间的关系。

假设你是一个房产中介,想通过房屋面积来预测房价。简单线性回归可以帮助你找到房屋面积与房价之间的线性关系,进而为客户提供更合理的报价。

本文将带你深入了解简单线性回归的理论基础、公式推导以及如何在Python中实现这一模型。

1. 简单线性回归理论

简单线性回归的基本假设是,因变量 Y(例如房价)与自变量 X(例如人口)之间存在线性关系。我们可以用以下的线性方程来表示这种关系:
在这里插入图片描述

其中:

  • y 是因变量(我们要预测的变量)。

  • x 是自变量(我们用来进行预测的变量)。

  • w0是截距(当x=0) 时,y的值)。

  • w1是斜率(自变量变化一个单位时,因变量的变化量)。

我们的目标是求 w0和w1的值,来找到一条跟预测值相关的直线。

从图中我们可以看出预测值与真实值之间存在误差,那么我们引入机器学习中的一个概念均方误差,它表示的是这些差值的平方和的平均数。这些误差的表达式如下:
在这里插入图片描述

均方误差的表达式如下:
在这里插入图片描述

2. python通过简单线性回归预测房价

2.1 预测数据

数据如下:

polulation,median_house_value
961,3.03
234,0.68
1074,2.92
1547,4.24
805,2.39
597,1.59
784,2.21
498,1.31
1602,4.28
292,0.54
1499,4.18
718,1.95
180,0.43
1202,3.62
1258,3.48
453,1.08
845,2.31
1032,2.96
384,0.68
896,2.62
425,0.82
928,2.95
1324,3.59
1435,4.02
543,1.62
1132,3.34
328,0.76
638,1.54
1389,3.78
692,1.79

x 轴是人口数量,y轴是房价

2.2导入标准库

# 导入标准库
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import pandas as pd
matplotlib.use('TkAgg')

2.3 导入数据

# 导入数据集
dataset = pd.read_csv('Data.csv')
x = dataset.iloc[:, :-1]
y = dataset.iloc[:, 1]

2.4 划分数据集

# 数据集划分 训练集/测试集
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=0)

2.5 导入线性回归模块

# 简单线性回归算法
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)

2.6 对测试集进行预测

# 对测试集进行预测
y_pred = regressor.predict(X_test)

2.7 计算均方误差 J

# 计算J
J = 1/X_train.shape[0] * np.sum((regressor.predict(X_train) - y_train)**2)
print("J = {}".format(J))

输出结果:

J = 0.031198935319832692

2.8 计算参数 w0、w1

# 计算参数 w0、w1
w0 = regressor.intercept_
w1 = regressor.coef_[0]
print("w0 = {}, w1 = {}".format(w0, w1))

输出结果:

w0 = -0.16411984840092098, w1 = 0.0029383965595942067

2.9 可视化训练集拟合结果

# 可视化训练集拟合结果
plt.figure(1)
plt.scatter(X_train, y_train, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
plt.title('population VS median_house_value (training set)')
plt.xlabel('population')
plt.ylabel('median_house_value')
plt.show()

输出结果:
在这里插入图片描述

可以很好的看到拟合的直线可以很好的表示原始数据的人口和房价的走势

2.10 可视化测试集拟合结果

# 可视化测试集拟合结果
plt.figure(2)
plt.scatter(X_test, y_test, color = 'red')
plt.plot(X_train, regressor.predict(X_train), color = 'blue')
plt.title('population VS median_house_value (test set)')
plt.xlabel('population')
plt.ylabel('median_house_value')
plt.show()

输出结果:
在这里插入图片描述

可以看到,拟合的直线在测试集上的表现是相当不错了,说明我们训练的线性模型有很好的应用效果。

2.11 保存模型

# 保存模型
import pickle
with open('../model/simple_house_price_model.pkl','wb') as file:pickle.dump(regressor,file);

2.12 加载模型并预测

import pickle
import numpy as np
import pandas as pd
# 加载模型并预测
with open('../model/simple_house_price_model.pkl','rb') as file:model = pickle.load(file)x_test = np.array([693,694])
x_test = pd.DataFrame(x_test)
x_test.columns=['polulation']
y_pred = model.predict(x_test)
print(y_pred)

输出结果:

[1.87218897 1.87512736]

相关文章:

机器学习(二)-简单线性回归

文章目录 1. 简单线性回归理论2. python通过简单线性回归预测房价2.1 预测数据2.2导入标准库2.3 导入数据2.4 划分数据集2.5 导入线性回归模块2.6 对测试集进行预测2.7 计算均方误差 J2.8 计算参数 w0、w12.9 可视化训练集拟合结果2.10 可视化测试集拟合结果2.11 保存模型2.12 …...

01.01、判定字符是否唯一

01.01、[简单] 判定字符是否唯一 1、题目描述 实现一个算法,确定一个字符串 s 的所有字符是否全都不同。 在这一题中,我们的任务是判断一个字符串 s 中的所有字符是否全都不同。我们将讨论两种不同的方法来解决这个问题,并详细解释每种方法…...

第五届“传智杯”全国大学生计算机大赛(练习赛)水题题解

目录 复读 题目描述 输入格式 输出格式 输入输出 说明/提示 源代码 时钟 题目描述 输入格式 输出格式 输入输出 说明/提示 源代码 平等的交易 题目描述 输入格式 输出格式 输入输出 说明/提示 源代码 清洁工 题目描述 输入格式 输出格式 输入输出…...

iOS 苹果开发者账号: 查看和添加设备UUID 及设备数量

参考链接:苹果开发者账号下添加新设备UUID - 简书 如果要添加新设备到 Profiles 证书里: 1.登录开发者中心 Sign In - Apple 2.找到证书设置: Certificate,Identifiers&Profiles > Profiles > 选择对应证书 edit &g…...

推进数字园区建设-成都国际数字影像产业园

在当今数字化浪潮的席卷下,数字园区建设已成为推动区域经济发展、提升产业竞争力的关键举措。成都国际数字影像产业园作为数字产业领域的重要项目,以其独特的发展模式和创新实践,在推进数字园区建设方面取得了显著成效,为数字产业…...

oracle linux8.10+ oracle 23ai安装

介质准备: 数据库23ai https://edelivery.oracle.com 上述网站下载基础版本,本次未使用。 本次是安装了带补丁的版本: Database Release Update 23.6.0.24.10 GoldImage表示带补丁用于直接安装的软件包 查找888.1对应Primary Note for …...

PH热榜 | 2024-12-25

1. Assistive24 标语:为残障人士提供的免费辅助技术 介绍:Assistive24 是一款免费的 Chrome 浏览器扩展程序,可以帮助患有注意力缺陷多动障碍 (ADHD)、阅读障碍 (dyslexia) 和低视力等障碍的用户更方便地浏览网页。它提供语音导航、自定义…...

OpenCV相机标定与3D重建(36)计算两幅图像之间基本矩阵(Fundamental Matrix)的函数findFundamentalMat()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 从两幅图像中的对应点计算基本矩阵。 cv::findFundamentalMat 是 OpenCV 中用于计算两幅图像之间基本矩阵(Fundamental Matrix&#…...

ZLG嵌入式笔记 | 电源设计避坑(上)

产品上量后,通常都会有降成需求。多年来,接触过不少产品降成案例,在电源上下刀过猛,引发了产品偶发性问题,带来了很不好的负面影响。本文将对这些案例进行总结,提供电源设计参考,确保产品降成不…...

.NET能做什么?全面解析.NET的应用领域

.NET 是由微软开发的一个开源、跨平台的开发框架。它不仅支持构建各种应用程序,还能运行在不同的操作系统上,包括 Windows、Linux 和 macOS。自从 .NET Core 的推出,.NET 成为了一个现代化的开发平台,能够满足企业和开发者日益多样…...

初始JavaEE篇 —— 网络原理---传输层协议:深入理解UDP/TCP

找往期文章包括但不限于本期文章中不懂的知识点: 个人主页:我要学编程程(ಥ_ಥ)-CSDN博客 所属专栏:JavaEE 目录 UDP协议 参数解析: 校验和的计算 TCP协议 参数解析: 确认应答机制 超时重传 连接管理 三次握…...

企业如何搭建安全的跨网文件安全交换管理系统

在数字化转型的浪潮中,企业对数据的安全性和流动性提出了前所未有的高要求。特别是在网络隔离的情况下,如何实现跨网的安全、高效的文件交换成为了众多企业迫切需要解决的问题。 这不仅是技术上的挑战,还涉及到企业内部管理流程的优化和安全策…...

2023 年 12 月青少年软编等考 C 语言四级真题解析

目录 T1. 移动路线T2. 公共子序列T3. 田忌赛马T4. 宠物小精灵之收服 T1. 移动路线 此题为 2021 年 12 月四级第一题原题,见 2021 年 12 月青少年软编等考 C 语言四级真题解析中的 T1。 T2. 公共子序列 此题为 2022 年 3 月四级第四题原题,见 2022 年 …...

GDPU Vue前端框架开发 期末赛道出勇士篇(更新ing)

记住,年底陪你跨年的不会仅是方便面跟你的闺蜜,还有孑的笔记。 选择题 1.下列选项用于设置Vue.js页面视图的元素是()。 A. Template B. script C. style D. title 2.下列选项中能够定义Vuejs根实例对象的元素是(&…...

老旧小区用电安全保护装置#限流式防火保护器参数介绍#

摘要 随着居民住宅区用电负荷的增加,用电安全问题日益突出,火灾隐患频繁发生。防火限流式保护器作为一种新型电气安全设备,能够有效预防因电气故障引发的火灾事故。本文介绍了防火限流式保护器的工作原理、技术特点及其在居民住宅区用电系统…...

7.C语言 宏(Macro) 宏定义,宏函数

目录 宏定义 宏函数 1.注释事项 2.注意事项 宏(Macro)用法 常量定义 简单函数实现 类型检查 条件编译 宏函数计算参数个数 宏定义进行类型转换 宏定义进行位操作 宏定义进行断言 总结 宏定义 #include "stdio.h" #include "string.h" #incl…...

4.系统学习-集成学习

集成学习 前言Bias and Variance过拟合(overfitting)与欠拟合(underfitting)集成学习为什么有效?Blending 模型集成Stakcing 模型集成Bagging模型集成Bagging 模型集成算法流程:Boosting模型集成作业 前言 …...

Max AI prompt2:

1,prompt1——总体概览 “请根据以下指导原则撰写文献解读,特别关注作者的研究思路和方法论: 1. 研究背景与目的: 概述文章研究的背景,明确研究的主要目的和研究问题。 2. 研究思路: 详细描述作者如何构建…...

[Unity Shader][图形渲染]【游戏开发】 Shader数学基础8 - 齐次坐标

在计算机图形学中,齐次坐标是一种方便计算和表示几何变换的方式。通过将三维空间中的 33矩阵扩展为 44的形式,可以统一表示平移、旋转、缩放等几何变换操作。在本篇文章中,我们将详细解析齐次坐标的定义及其在图形变换中的应用。 什么是齐次坐标? 齐次坐标的核心思想是通过…...

挑战一个月基本掌握C++(第十二天)了解命名空间,模板,预处理器

一 命名空间 假设这样一种情况,当一个班上有两个名叫 Zara 的学生时,为了明确区分它们,我们在使用名字之外,不得不使用一些额外的信息,比如他们的家庭住址,或者他们父母的名字等等。 同样的情况也出现在 …...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

ios苹果系统,js 滑动屏幕、锚定无效

现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线, n r n_r nr​ 根接收天线的 MIMO 系…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)

题目 做法 启动靶机,点进去 点进去 查看URL,有 ?fileflag.php说明存在文件包含,原理是php://filter 协议 当它与包含函数结合时,php://filter流会被当作php文件执行。 用php://filter加编码,能让PHP把文件内容…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代,海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构,在处理大规模数据抓取任务时展现出强大的能力。然而,随着业务规模的不断扩大和数据抓取需求的日益复杂,传统…...