当前位置: 首页 > news >正文

基于YOLOV5+Flask安全帽RTSP视频流实时目标检测

1、背景

在现代工业和建筑行业中,安全始终是首要考虑的因素之一。特别是在施工现场,工人佩戴安全帽是确保人身安全的基本要求。然而,人工监督难免会有疏漏,尤其是在大型工地或复杂环境中,确保每个人都佩戴安全帽变得非常具有挑战性。
为了解决这一问题,计算机视觉技术提供了一个有效的解决方案。通过使用深度学习模型(如YOLOv5)进行实时目标检测,我们可以自动识别视频流中的工人是否佩戴了安全帽。结合Flask框架,我们可以将这一功能封装为一个Web服务,方便在任何地方通过浏览器或其他设备进行访问。

项目目标

  • 使用YOLOv5模型实现对RTSP视频流的工人是否佩戴安全帽实时目标检测。
  • 将检测功能集成到Flask Web应用中,以便通过简单的HTTP请求访问检测结果。
  • 提供一个用户友好的前端界面,实时展示检测结果。

技术栈

  • YOLOv5:一个高效的实时目标检测模型,适用于多种场景的物体检测。
  • Flask:一个轻量级的Python Web框架,用于构建RESTful API和Web应用。
  • OpenCV:一个强大的计算机视觉库,用于处理视频流和图像。
  • RTSP:实时流传输协议,用于从摄像头获取视频流。

接下来,我将详细介绍如何构建这样一个系统,从环境准备到最终的部署。

2、环境准备

pip install Flask
pip install opencv-python
# 安装YOLOv5依赖:
pip install -r requirements.txt
#下载预训练权重:
wget https://github.com/ultralytics/yolov5/releases/download/v4.0/yolov5s.pt

3、模型训练

数据集为各类场景下的安全帽图片,并使用Labelimg标注工具对每张图片中的目标边框(Bounding Box)及类别进行标注。一共包含22789张图片,其中训练集包含15887张图片,验证集包含4641张图片,测试包含2261张图片。
在这里插入图片描述

  • 数据集目录结构:

    yolov5/
    ├── datasets/
    │   ├── train/
    │   │   ├── images/ 
    │   │   └── labels/      
    │   ├── val/
    │   │   ├── images/
    │   │   └── labels/
    │   └── test/
    │       ├── images/
    │       └── labels/
    
  • 创建数据配置文件:

    在 datasets 文件夹下创建一个 data.yaml 文件,内容如下:

    train: E:\yolo\mydata\train\images
    val: E:\yolo\mydata\val\images
    test: E:\yolo\mydata\test\images# number of classes
    nc: 2# class names
    names: ['head', 'helmet']
    
  • 在YOLOv5项目目录下,运行以下命令开始训练模型:

    python train.py --img 640 --batch 16 --epochs 50 --data datasets/data.yaml --cfg models/yolov5s.yaml --weights yolov5s.pt --project runs/train --name safety_helmet
    

4、训练结果评估

在深度学习中,我们通常用损失函数下降的曲线来观察模型训练的情况。YOLOv5在训练时主要包含三个方面的损失:定位损失(box_loss)、分类损失(cls_loss)和动态特征损失(dfl_loss),在训练结束后,可以在runs/目录下找到训练过程及结果文件,如下所示:
在这里插入图片描述
在这里插入图片描述
本文训练结果如下:
在这里插入图片描述
PR曲线:
在这里插入图片描述

5、实现RTSP视频流处理

使用OpenCV可以方便地处理RTSP视频流逻辑集成到Flask Web服务中,以便通过HTTP请求访问目标检测结果。在这个获取视频流过程中利用海康或者大华摄像头。

from flask import Flask, render_template, Response
import cv2from models.experimental import attempt_load
from utils.general import set_logging, check_img_size
from utils.torch_utils import select_deviceapp = Flask(__name__)from camera_ready import detectclass VideoCamera(object):def __init__(self):# 通过opencv获取实时视频流(海康摄像头)self.count = 0self.video = cv2.VideoCapture("rtsp://admin:Tc246800@ya.tenchan.cn:61554/Streaming/Channels/102")# 大华摄像头# self.video = cv2.VideoCapture("rtsp://%s:%s@%s/cam/realmonitor?channel=%d&subtype=0" % (user, pwd, ip, channel))self.weights, imgsz = 'best.pt', 640set_logging()self.device = select_device('')self.half = self.device.type != 'cpu'  # half precision only supported on CUDAself.model = attempt_load(self.weights, map_location=self.device)  # load FP32 modelself.stride = int(self.model.stride.max())  # model strideself.imgsz = check_img_size(imgsz, s=self.stride)  # check img_sizeif self.half:self.model.half()  # to FP16def __del__(self):self.video.release()def get_frame(self):for i in range(1):success, image = self.video.read()image = detect(source=image, half=self.half, model=self.model, device=self.device, imgsz=self.imgsz,stride=self.stride)ret, jpeg = cv2.imencode('.jpg', image)return jpeg.tobytes()@app.route('/xyhaw')
def xyhaw():return render_template('index.html')def gen(camera):while True:frame = camera.get_frame()yield (b'--frame\r\n'b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n')@app.route('/video_feed')
def video_feed():return Response(gen(VideoCamera()),mimetype='multipart/x-mixed-replace; boundary=frame')if __name__ == '__main__':app.run(host='0.0.0.0', debug=True)

前端简单页面:index.html

<!DOCTYPE html>
<html>
<head><title>安全帽检测</title><style>body {font-family: Arial, sans-serif;text-align: center;margin: 0;padding: 0;}.header {background-color: #4CAF50;color: white;padding: 15px;}.video-container {margin-top: 20px;}img {border: 1px solid #ddd;border-radius: 4px;padding: 5px;}</style>
</head>
<body><div class="header"><h1>安全帽RTSP视频流实时目标检测</h1></div><div class="video-container"><img src="{{ url_for('video_feed') }}" width="640" height="480"></div>
</body>
</html>

6、检测结果

相关文章:

基于YOLOV5+Flask安全帽RTSP视频流实时目标检测

1、背景 在现代工业和建筑行业中&#xff0c;安全始终是首要考虑的因素之一。特别是在施工现场&#xff0c;工人佩戴安全帽是确保人身安全的基本要求。然而&#xff0c;人工监督难免会有疏漏&#xff0c;尤其是在大型工地或复杂环境中&#xff0c;确保每个人都佩戴安全帽变得非…...

Windows内置的服务器IIS(Internet Information Services)托管网站

一. 安装IIS 打开控制面板&#xff1a;在开始菜单搜索“控制面板”并打开它。程序和功能&#xff1a;点击“程序”然后选择“程序和功能”。启用或关闭Windows功能&#xff1a;在左侧菜单中选择“启用或关闭Windows功能”。查找并勾选IIS&#xff1a;在弹出的窗口中&#xff0c…...

虚幻引擎结构之UObject

一. UObject 的介绍 UObject 是虚幻引擎中的核心基础类,所有其他游戏对象和资源类都直接或间接地继承自它。作为虚幻引擎的基石,UObject 提供了多项关键功能,包括内存管理、序列化、反射(introspection)、垃圾回收以及元数据支持。在虚幻引擎中,UObject 类的实例通常被称…...

js的Reflect对象

Reflect 对象是 JavaScript ES6 中引入的一个内建对象&#xff0c;它提供了一系列与对象操作相关的方法。这些方法与 Object 对象上的方法类似&#xff0c;但在行为上有一些差异&#xff0c;并且更加规范和统一。Reflect 对象并不是一个构造函数&#xff0c;不能被 new 操作符调…...

this指向了谁?

看函数在执行的时候是如何调用的&#xff0c; 1 如果这个函数是用普通函数调用模式来进行调用&#xff0c;它内部的this指向了window; 2 如果一个函数在调用的时候是通过对象方法模式来进行调用&#xff0c;则它内部的this就是我们的对象; 3 如果一个函数在调用的时候通过构…...

基于Resnet、LSTM、Shufflenet及CNN网络的Daily_and_Sports_Activities数据集仿真

在深度学习领域&#xff0c;不同的网络结构设计用于解决特定的问题。本文将详细分析四种主流网络结构&#xff1a;卷积神经网络&#xff08;CNN&#xff09;、残差网络&#xff08;ResNet&#xff09;、长短期记忆网络&#xff08;LSTM&#xff09;和洗牌网络&#xff08;Shuff…...

mac系统vsCode中使用Better Comments在.vue文件里失效

问题&#xff1a;关于Better Comments默认在html、TS、JS中有效&#xff0c;在vue中无效,需要单独进行配置 windows系统可以参考友链Better Comments&#xff08;注释高亮&#xff09;在vue文件里失效的问题 关于Better Comments电脑的配置路径&#xff1a; Windows系统&…...

UE5.3 C++ Ceiusm中的POI 制作3DUI 结合坐标转化

一.核心思路WidgetComponent CesiumGloberAnchor 二.先制作POI 创建C Actor来制作&#xff0c;APOI。直接上代码 #pragma once#include "CoreMinimal.h" #include "GameFramework/Actor.h" #include "CesiumGlobeAnchorComponent.h" #includ…...

一起学Git【第六节:查看版本差异】

git diff是 Git 版本控制系统中用于展示差异的强大工具。他可以用于查看文件在工作区、暂存区和版本库之间的差异、任意两个指定版本之间的差异和两个分支之间的差异等,接下来进行详细的介绍。 1.显示工作区与暂存区之间的差异 # 显示工作区和暂存区之间的差异,后面不加参数…...

numpy np.newaxis介绍

np.newaxis 是 NumPy 中用于增加数组维度的关键字。它的作用是为数组插入一个新的维度&#xff0c;从而改变数组的形状&#xff08;shape&#xff09;。 基本用法 np.newaxis 等价于 None&#xff0c;可以作为索引使用&#xff0c;用于在指定位置增加一个维度。增加的维度的大…...

小程序配置文件 —— 16 项目配置文件和配置 sass

目录 项目配置文件配置 sass 项目配置文件 在创建项目的时候&#xff0c;每个项目的根目录生成两个 config.json 文件&#xff08;project.config.json 和 project.private.config.json &#xff09;&#xff0c;用于保存开发者在工具上做的个性化配置&#xff0c;例如和编译有…...

【yolov5】实现FPS游戏人物检测,并定位到矩形框上中部分,实现自瞄

介绍 本人机器学习小白&#xff0c;通过语言大模型百度进行搜索&#xff0c;磕磕绊绊的实现了初步效果&#xff0c;能有一些锁头效果&#xff0c;但识别速度不是非常快&#xff0c;且没有做敌友区分&#xff0c;效果不是非常的理想&#xff0c;但在4399小游戏中爽一下还是可以…...

概率统计与随机过程--作业5

一、推导题 二、计算题 1、某单位为了研究太阳镜销售和广告费用之间的关系&#xff0c;搜集了以下数据&#xff0c;使用回归分析方法得到线性回归模型&#xff1a; 广告费用&#xff08;万元&#xff09;x 2 5 6 7 22 25 28 30 22 18 销售量&#xff08;个&#xf…...

“802.11g”,“802.11n”,“802.11ac”,“802.11ax”

802.11g、802.11n、802.11ac、802.11ax都是IEEE制定的无线局域网&#xff08;WLAN&#xff09;标准&#xff0c;它们各自具有不同的特点和性能。以下是对这四个标准的详细介绍&#xff1a; 1. 802.11g 定义&#xff1a;802.11g是IEEE制定的一种无线局域网标准&#xff0c;它提…...

Kubernetes 常用的网络插件

上篇内容跟大家简单聊了k8s网络模型原理。分别围绕着容器、Pod、Service、网络策略等展开了详细的讲解。这次想跟大家聊聊k8s的CNI网络插件。 CNI 是 Kubernetes 网络模型的核心组件&#xff0c;它是一个插件接口&#xff0c;允许用户选择和配置网络插件来管理 Pod 的网络。CN…...

Retrofit和rxjava 实现窜行请求,并行请求,循环多次请求,递归请求,错误重试

在使用 Retrofit 和 RxJava 时&#xff0c;可以通过多种方式实现多次请求&#xff0c;比如串行请求、并行请求、依赖请求等。以下是一些常见的实现方式&#xff1a; 1. 串行请求&#xff08;依赖关系&#xff09; 一个请求的结果作为另一个请求的输入&#xff0c;可以用 flat…...

2025年度好用便签推荐,电脑桌面便签app分享

在快节奏的现代生活中&#xff0c;高效的时间管理和任务规划变得尤为重要。一款好用的便签软件不仅能帮助我们记录灵感、待办事项&#xff0c;还能极大地提升我们的工作效率。 在众多电脑桌面便签中&#xff0c;好用便签以其出色的桌面便签功能脱颖而出&#xff0c;备受用户青…...

【论文解读】Arbitrary-steps Image Super-resolution via Diffusion Inversion

级别:arXiv Computer Vision and Pattern Recognition(2024)作者:Zongsheng Yue,Kang Liao,Chen Change Loy时间:2024论文链接:Arbitrary-steps Image Super-resolution via Diffusion Inversion摘要 技术概述:该技术基于扩散反转,通过设计部分噪声预测策略来构建扩散…...

kkFileView集成springboot:使用自定义预览接口(非minio预览接口),发现无法预览资源

目录 1、背景2、原因分析3、解决办法 1、背景 按照项目验收要求&#xff0c;需要对minio中存储的数据进行加密 之前提供给kkFileView的预览地址都是获取的minio预览地址 由于minio中的资源进行了加密处理&#xff0c;所以我们自定义预览接口&#xff08;进行解密操作&#xff…...

被裁20240927 --- 嵌入式硬件开发 STM32篇

人很容易原谅别人的错误但很难原谅别人的正确 1. 文档、手册、指南、资源2. MCU 结构3. MCU 和 MPU 的区别4. 一些概念什么是看门狗 &#xff1f;什么是 DMA &#xff1f;什么是晶振 &#xff1f;什么是片内外设&#xff1f;软件协议、硬件协议、数据协议、通讯协议、通信协议u…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

MySQL 8.0 事务全面讲解

以下是一个结合两次回答的 MySQL 8.0 事务全面讲解&#xff0c;涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容&#xff0c;并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念&#xff08;ACID&#xff09; 事务是…...