iDP3复现代码数据预处理全流程(二)——vis_dataset.py
vis_dataset.py 主要作用在于点云数据的可视化,并可以做一些简单的预处理
关键参数基本都在 vis_dataset.sh 中定义了,需要改动的仅以下两点:
1. 点云图像保存位置,因为 dataset_path 被设置为了绝对路径,因此需要相应修改:
save_dir = f"{dataset_path}/{episode_idx}" # 设置当前集的保存目录
2. 点云视频保存位置,对应修改:
if vis_cloud:# 将图像序列转换为视频os.system(f"ffmpeg -r 10 -i {save_dir}/%d.png -vcodec mpeg4 -y {dataset_path}/{episode_idx}.mp4")
运行生成:
更详细解释如下:
目录
1 库函数调用
2 创建 ArgumentParser 对象,解析命令行参数
3 打开指定路径 Zarr 数据集并获取数据
4 分割数据、处理并保存
5 回放图像和点云数据
6 将点云图像存为视频
1 库函数调用
import zarr # 导入 zarr 库,用于处理 zarr 格式的数据
import cv2 # 导入 OpenCV 库,用于图像处理
from termcolor import cprint # 从 termcolor 库导入 cprint 函数,用于彩色打印输出
import time # 导入 time 库,用于时间相关操作
from tqdm import tqdm # 导入 tqdm 库,用于显示进度条
import visualizer # 导入自定义的 visualizer 模块,用于点云可视化
import os # 导入 os 库,用于操作系统相关功能
import argparse # 导入 argparse 库,用于解析命令行参数
import numpy as np # 导入 numpy 库,用于数值计算
除了 visualizer 为自定义库函数,其余均为标准库
2 创建 ArgumentParser 对象,解析命令行参数
# 创建 ArgumentParser 对象,用于解析命令行参数
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_path", type=str, default="data/box_zarr") # 添加 dataset_path 参数,默认值为 "data/box_zarr"
parser.add_argument("--use_img", type=int, default=0) # 添加 use_img 参数,默认值为 0(不使用图像数据)
parser.add_argument("--vis_cloud", type=int, default=0) # 添加 vis_cloud 参数,默认值为 0(不可视化点云数据)
parser.add_argument("--use_pc_color", type=int, default=0) # 添加 use_pc_color 参数,默认值为 0(不使用点云颜色)
parser.add_argument("--downsample", type=int, default=0) # 添加 downsample 参数,默认值为 0(不下采样)# 解析命令行参数
args = parser.parse_args()
use_img = args.use_img
dataset_path = args.dataset_path
vis_cloud = args.vis_cloud
use_pc_color = args.use_pc_color
downsample = args.downsample
命令行参数均在 vis_dataset.sh 中定义,若未定义,则会使用默认参数
3 打开指定路径 Zarr 数据集并获取数据
# 使用 zarr 打开指定路径的数据集
with zarr.open(dataset_path) as zf:print(zf.tree()) # 打印数据集的树状结构# 获取数据if use_img:all_img = zf['data/img'] # 获取图像数据all_point_cloud = zf['data/point_cloud'] # 获取点云数据all_episode_ends = zf['meta/episode_ends'] # 获取集结束标记
打开 dataset_path 位置数据集,并获取对应数据
4 分割数据、处理并保存
# 根据 episode_ends 划分每一集的数据for episode_idx, episode_end in enumerate(all_episode_ends):if episode_idx == 0:if use_img:img_episode = all_img[:episode_end] # 获取第一集的图像数据point_cloud_episode = all_point_cloud[:episode_end] # 获取第一集的点云数据else:if use_img:img_episode = all_img[all_episode_ends[episode_idx-1]:episode_end] # 获取当前集的图像数据point_cloud_episode = all_point_cloud[all_episode_ends[episode_idx-1]:episode_end] # 获取当前集的点云数据save_dir = f"visualizations/{dataset_path}/{episode_idx}" # 设置当前集的保存目录if vis_cloud:os.makedirs(save_dir, exist_ok=True) # 创建保存目录(如果需要可视化点云)cprint(f"replay episode {episode_idx}", "green") # 打印当前集的重放信息,使用绿色字体
5 回放图像和点云数据
# 回放每一帧的数据for i in range(point_cloud_episode.shape[0]):pc = point_cloud_episode[i] # 获取当前帧的点云数据# 如果需要下采样if downsample:num_points = 4096 # 设置下采样点数idx = np.random.choice(pc.shape[0], num_points, replace=False) # 随机选择点pc = pc[idx] # 获取下采样后的点云数据if use_img:img = img_episode[i] # 获取当前帧的图像数据img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 将图像从 BGR 转换为 RGBcv2.imshow('img', img) # 显示图像cv2.waitKey(1) # 等待 1 毫秒time.sleep(0.05) # 暂停 0.05 秒if vis_cloud:if not use_pc_color:pc = pc[:, :3] # 如果不使用点云颜色,只保留前三个维度(XYZ)visualizer.visualize_pointcloud(pc, img_path=f"{save_dir}/{i}.png") # 可视化点云并保存图像print(f"vis cloud saved to {save_dir}/{i}.png") # 打印保存路径print(f"frame {i}/{point_cloud_episode.shape[0]}") # 打印当前帧的处理进度
6 将点云图像存为视频
if vis_cloud:# 将图像序列转换为视频os.system(f"ffmpeg -r 10 -i {save_dir}/%d.png -vcodec mpeg4 -y {dataset_path}/{episode_idx}.mp4")
使用 ffmpeg 命令将保存在{save_dir}目录下的一系列PNG图片(按序号命名)转换为帧率为10帧每秒的MPEG-4格式视频
并保存到 {dataset_path}/{episode_idx}.mp4,如果输出文件已存在,则会直接覆盖
相关文章:

iDP3复现代码数据预处理全流程(二)——vis_dataset.py
vis_dataset.py 主要作用在于点云数据的可视化,并可以做一些简单的预处理 关键参数基本都在 vis_dataset.sh 中定义了,需要改动的仅以下两点: 1. 点云图像保存位置,因为 dataset_path 被设置为了绝对路径,因此需要相…...

容器化部署服务全流程
系列文章目录 文章目录 系列文章目录前言一、什么是容器?二、如何安装docker三、如何写dockerfile四、如何启动服务五、常见命令总结总结 前言 这篇文章,主要目的是通过容器化技术简化应用程序的部署、运行和管理,提高开发、测试和生产环境…...

Flutter DragTarget拖拽控件详解
文章目录 1. DragTarget 控件的构造函数主要参数: 2. DragTarget 的工作原理3. 常见用法示例 1:实现一个简单的拖拽目标解释:示例 2:与 Draggable 结合使用解释: 4. DragTarget 的回调详解5. 总结 DragTarget 是 Flutt…...

操作系统动态分区分配算法-首次适应算法c语言实现
目录 一、算法原理 二、算法特点 1.优先利用低址空闲分区: 2.查找开销: 3.内存碎片: 三、内存回收四种情况 1.回收区上面(或后面)的分区是空闲分区: 2.回收区下面(或前面)的…...

mybatis-plus自动填充时间的配置类实现
mybatis-plus自动填充时间的配置类实现 在实际操作过程中,我们并不希望创建时间、修改时间这些来手动进行,而是希望通过自动化来完成,而mybatis-plus则也提供了自动填充功能来实现这一操作,接下来,就来了解一下mybatis…...

Vite内网ip访问,两种配置方式和修改端口号教程
目录 问题 两种解决方式 结果 总结 preview.host preview.port 问题 使用vite运行项目的时候,控制台会只出现127.0.0.1(localhost)本地地址访问项目。不可以通过公司内网ip访问,其他团队成员无法访问,这是因为没…...

【星海随笔】删除ceph
cephadm shell ceph osd set noout ceph osd set norecover ceph osd set norebalance ceph osd set nobackfill ceph osd set nodown ceph osd set pause参考文献: https://blog.csdn.net/lyf0327/article/details/90294011 systemctl stop ceph-osd.targetyum re…...

HarmonyOS NEXT实战:自定义封装多种样式导航栏组件
涉及知识点和装饰器 ComponentV2,Local, Builder,BuilderParam,Extend, Require ,Param,Event等第三方库:ZRouter ,如项目中本来就用了ZRouter路由库,案例中…...

大数据面试笔试宝典之Flink面试
1.Flink 是如何支持批流一体的? F link 通过一个底层引擎同时支持流处理和批处理. 在流处理引擎之上,F link 有以下机制: 1)检查点机制和状态机制:用于实现容错、有状态的处理; 2)水印机制:用于实现事件时钟; 3)窗口和触发器:用于限制计算范围,并定义呈现结果的…...

pytorch整体环境打包安装到另一台电脑上
步骤一:安装conda-pack 首先利用 pip list 指令检查conda环境安装在哪里,在系统环境(base)下,于是我是使用的conda指令完成的。 # 使用Conda安装(如果已安装conda) conda install conda-pack …...

PostgreSQL 数据库连接
title: PostgreSQL 数据库连接 date: 2024/12/29 updated: 2024/12/29 author: cmdragon excerpt: PostgreSQL是一款功能强大的开源关系数据库管理系统,在现代应用中广泛应用于数据存储和管理。连接到数据库是与PostgreSQL进行交互的第一步,这一过程涉及到多个方面,包括连…...

【算法】复杂性理论初步
六、算法复杂性初步 重要的复杂性类 P P P 的定义 多项式时间内可解的问题 若 L ∈ P L∈P L∈P,则存在确定性多项式时间的图灵机 M M M,使得 M ( x ) 1 ⟺ x ∈ L M(x)1⟺x∈L M(x)1⟺x∈L N P NP NP 的定义 多项式时间内可验证验证解的正确性 &…...

HarmonyOS NEXT应用开发实战:免费练手的网络API接口分享
学习一项技能,最好也最快的办法就是直接动手实战。在实战中不断的总结经验和收获成就感。这里分享些好用且免费的网络API练手接口,这对于想要提升自己网络开发能力的开发者来说,无疑是极大的福音。今天,我将详细介绍一个API接口集…...

C++的第一个程序
前言 在学习c之前,你一定还记得c语言的第一个程序 当时刚刚开始进行语言学习 因此告诉到,仅仅需要记住就可以 #include <stdio.h>int main(){printf("Hello World");return 0; }而对于c中的第一个程序,似乎有所变化 C的…...

Java 中 Stream 流的使用详解
Java 中 Stream 流的使用详解 什么是 Stream? Stream 是 Java 8 引入的一种全新的操作集合的方式。它支持通过声明性方式对集合进行复杂的数据操作(如过滤、排序、聚合等),避免使用大量的 for 循环,提高代码的可读性…...

【UE5.3.2】生成vs工程并rider打开
Rider是跨平台的,UE也是,当前现在windows上测试首先安装ue5.3.2 会自动有右键的菜单: windows上,右键,生成vs工程 生成的结果 sln默认是vs打开的,我的是vs2022,可以open with 选择 rider :Rider 会弹出 RiderLink是什么插...

ssh免密码登陆配置
ssh 命令本身不支持直接在命令中带上密码,出于安全考虑,SSH 协议不允许将密码明文写在命令中。直接在命令行中输入密码是一种不推荐的做法,因为它会暴露密码,增加安全风险。 如果你希望实现自动化登录而不手动输入密码࿰…...

Hive之import和export使用详解
在hive-0.8.0后引入了import/export命令。 Export命令可以导出一张表或分区的数据和元数据信息到一个输出位置,并且导出数据可以被移动到另一个hadoop集群或hive实例,并且可以通过import命令导入数据。 当导出一个分区表,原始数据可能在hdf…...

数据库锁的深入探讨
数据库锁(Database Lock)是多用户环境中用于保证数据一致性和隔离性的机制。随着数据库系统的发展,特别是在高并发的场景下,锁的机制变得尤为重要。通过使用锁,数据库能够防止并发操作导致的数据冲突或不一致。本文将深…...

【每日学点鸿蒙知识】沉浸式状态栏、类似ref 属性功能属性实现、自定义对话框背景透明、RichEditor粘贴回调、自动滚动列表
1、HarmonyOS 沉浸式状态栏? 实现沉浸式状态栏功能时,能够实现,但是目前每个自定义组件都需要padding top 状态栏的高度才行,有办法实现统一设置吗?不需要每个自定义组件中都padding top 状态栏的高度? 暂…...

Hive刷分区MSCK
一、MSCK刷分区 我们平时通常是通过alter table add partition方式增加Hive的分区的,但有时候会通过HDFS put/cp命令或flink、flum程序往表目录下拷贝分区目录,如果目录多,需要执行多条alter语句,非常麻烦。Hive提供了一个"…...

在Ubuntu下通过Docker部署Mastodon服务器
嘿,朋友们,今天咱们来聊聊如何在Ubuntu上通过Docker部署Mastodon服务器。想要拥有自己的社交媒体平台?Mastodon就是个不错的选择!🌐🚀 Docker与Mastodon简介 Docker是一个开源的容器化平台,让…...

【EtherCATBasics】- KRTS C++示例精讲(2)
EtherCATBasics示例讲解 目录 EtherCATBasics示例讲解结构说明代码讲解 项目打开请查看【BaseFunction精讲】。 结构说明 EtherCATBasics:应用层程序,主要用于人机交互、数据显示、内核层数据交互等; EtherCATBasics.h : 数据定义…...

MYSQL无法被连接问题
如果您在尝试连接到MySQL服务器时遇到问题,以下描述了您可以采取的一些措施来纠正该问题。 确保服务器正在运行。如果没有,则客户端无法连接到它。例如,如果尝试连接到服务器失败并出现以下消息之一,则可能是服务器未运行…...

【Python】什么是字典(Dictionary)?
什么是字典(Dictionary)? 字典(Dictionary)是 Python 中一种 可变(mutable)的数据结构,用于存储键值对(key-value pairs)。字典通过 键(key&…...

Web安全 - API 成批分配漏洞的四种修复方案
文章目录 概述危害修复建议与实施方案解决方案 1:手动绑定数据解决方案 2:使用 DTO 进行数据过滤解决方案 3:启用字段白名单解决方案 4:验证输入数据模式 验证修复有效性小结 概述 批量分配漏洞(Mass Assignment&#…...

计算机网络实验室建设方案
一、计算机网络实验室拓扑结构 计算机网络综合实验室解决方案,是面向高校网络相关专业开展教学实训的综合实训基地解决方案。教学实训系统采用 B/S架构,通过公有云教学实训平台在线学习模式,轻松实现网络系统建设与运维技术的教学…...

ubuntu20.04 调试bcache源码
搭建单步调试bcache的环境,/dev/sdb作为backing dev, /dev/sdc作为cache dev。 一、宿主机环境 1)安装ubuntu 20.04 : 参考ubuntu20.04 搭建kernel调试环境第一篇--安装系统_ubuntu kernel-CSDN博客安装,其中的第六…...

xss csrf怎么预防?
一、XSS(跨站脚本攻击)预防 XSS 是指攻击者向目标网站注入恶意脚本,从而在用户浏览器中执行。 1. 输入过滤 清理用户输入: 拦截或清理HTML特殊字符(如 <, >, , ", &)。使用安全库&#x…...

near-synonym反义词生成(2):Prompt +Bert-MLM(FT)
near-synonym之反义词生成方法二 near-synonym, 中文反义词/近义词/同义词(antonym/synonym)工具包. 方法一为(neg_antonym): Word2vec -> ANN -> NLI -> Length 方法二为(mlm_antonym): Prompt Bert-MLM(FT) Beam-Search 项目地址 github: https://github.com/yon…...