当前位置: 首页 > news >正文

每日一练 | 时延和抖动

01 真题题目


关于时延和抖动,下面描述正确的是(多选):
A. 端到端时延等于处理时延与队列时延之和
B. 抖动是因为每个包的端到端时延不相等造成的
C. 抖动的大小跟时延的大小相关,时延小则抖动的范围也小,时延大则可能的抖动范围也大
D. 抖动大小跟时延不相关

02 真题答案

BC

03 答案解析


A. 错误
端到端时延不仅仅是处理时延和队列时延之和。
实际上,端到端时延包括以下几个部分:
· 处理时延:路由器或交换机处理数据包所需的时间。
· 队列时延:数据包在队列中等待处理的时间。
· 传输时延:数据包通过物理链路传输所需的时间。
· 传播时延:信号在物理介质上传播所需的时间。
因此,端到端时延是以上所有时延的总和,而不仅仅是处理时延与队列时延之和。


B. 正确
抖动是指网络中数据包的端到端时延变化。如果每个数据包的端到端时延不相等,就会导致接收端接收到的数据包时间间隔不稳定,从而产生抖动。
因此,抖动确实是因为每个包的端到端时延不相等造成的。


C. 正确
抖动的大小与整体时延有一定的相关性。通常情况下,时延越大,可能出现的抖动范围也越大。
这是因为较大的时延意味着数据包在网络中停留的时间更长,受到更多因素(如网络拥塞、路由变化等)的影响,从而增加了时延的变化范围。
相反,较小时延意味着数据包在网络中的停留时间较短,受外部因素影响较小,抖动范围也会相对较小。


D. 错误
抖动大小与整体时延并不是完全无关的。
正如前面所述,较大的时延通常伴随着更大的抖动范围,因为数据包在网络中停留的时间越长,受到的影响因素越多,时延变化的可能性也就越大。
因此,选项 D 的说法是错误的。

04 学习拓展


1. 深入理解时延和抖动的概念
· 时延(Delay):
时延是指数据从发送端到接收端所花费的总时间。它由多个部分组成,包括处理时延、队列时延、传输时延和传播时延。了解各个组成部分有助于优化网络性能,减少不必要的时延。
· 抖动(Jitter):
抖动是指数据包到达时间的波动或变化。它是由于不同数据包在网络中经历不同的路径、排队延迟等因素导致的。抖动对实时应用(如 VoIP 和视频会议)影响较大,因为它可能导致音频或视频的卡顿和不连贯。


2. 实际应用案例分析
· 企业网络中的 QoS 配置:
在企业环境中,管理员可以通过配置 QoS(Quality of Service)策略来减少抖动。例如,为关键业务流量(如 VoIP 和视频会议)分配较高的优先级,确保这些流量在网络中得到优先处理,从而减少时延和抖动。
· 数据中心中的流量管理:
数据中心中,通过使用流量整形和队列管理技术,可以有效控制抖动。例如,设置合理的队列深度和调度算法,确保不同类型的应用流量能够按需分配带宽,避免因网络拥塞导致的抖动增加。


3. 注意事项和常见问题解决方法
· 时延优化:
如果发现网络时延过高,检查网络拓扑结构和设备配置,确保没有瓶颈或拥塞点。还可以通过升级网络设备和链路带宽,减少传输时延和传播时延。
· 抖动控制:
如果发现抖动过大,考虑启用 QoS 功能,为关键业务流量提供优先处理。此外,定期监控网络性能,及时调整队列管理和流量调度策略,以减少抖动。
· 故障排查:
使用日志分析工具和诊断命令,快速定位和解决问题,确保网络的安全性和稳定性。例如,通过查看路由器和交换机的日志,可以找出是否存在异常流量或配置错误的问题。
总之,时延和抖动是评估网络性能的重要指标。理解它们之间的关系以及如何优化网络配置,可以帮助我们构建更加高效和稳定的网络环境。

还想学更多技术知识?又或是需要完整华为真题真题题库?

私信小编,回复【题库】,限时获取~

相关文章:

每日一练 | 时延和抖动

01 真题题目 关于时延和抖动,下面描述正确的是(多选): A. 端到端时延等于处理时延与队列时延之和 B. 抖动是因为每个包的端到端时延不相等造成的 C. 抖动的大小跟时延的大小相关,时延小则抖动的范围也小,时…...

嵌入式开发之使用 FileZilla 在 Windows 和 Ubuntu 之间传文件

01-FileZilla简介 FileZilla 是一个常用的文件传输工具,它支持多种文件传输协议,包括以下主要协议: FTP (File Transfer Protocol) 这是 FileZilla 最基本支持的协议。FTP 是一种明文传输协议,不加密数据(包括用户名和…...

腾势D9风光不再?中期改款能否及时“救火”

文/王俣祺 导语:腾势D9销量下滑了,这背后是MPV市场的整体没落还是众多新车的围追堵截?如今2025款腾势D9也来了,“加量不加价”的新车又能否逆转乾坤,重夺MPV市场霸主的地位? 腾势D9销量下滑的“真相” 回…...

OpenCV-Python实战(11)——边缘检测

一、Sobel 算子 通过 X 梯度核与 Y 梯度核求得图像在,水平与垂直方向的梯度。 img cv2.Sobel(src*,ddepth*,dx*,dy*,ksize*,scale*,delta*,borderType*)img:目标图像。 src:原始图像。 ddepth:目标图像深度,-1 代表…...

【智行安全】基于Synaptics SL1680的AI疲劳驾驶检测方案

随著车载技术的快速进步,驾驶安全越来越受到重视,而疲劳驾驶是造成交通事故的重要原因之一。传统的驾驶监控技术因精度不足或反应迟缓,无法满足实时监测需求。因此,结合人工智能技术的疲劳驾驶检测系统成为行业新方向,…...

机器学习随机森林回归时间序列预模型中时间滑动窗口作用以及参数设置

一、时间序列模型中时间滑动窗口作用 在时间序列模型中,时间滑动窗口(Sliding Window)起到了至关重要的作用。它是一种常见且有效的数据表示技术,通过将时间序列数据分割成多个固定大小的窗口,来捕捉和分析数据中的模式…...

【Rust自学】7.5. use关键字 Pt.2 :重导入与换国内镜像源教程

喜欢的话别忘了点赞、收藏加关注哦,对接下来的教程有兴趣的可以关注专栏。谢谢喵!(・ω・) 7.5.1. 使用pub use重新导入名称 使用use将路径导入作用域内后。该名称在词作用域内是私有的。 以上一篇文章的代码为例: m…...

自定义luacheck校验规则

安装运行环境 安装环境及源码解析,参考:LuaCheck校验原理解析 自定义校验规则 从代码中可以看出,定义一条规则有以下关键点: 需要定义告警信息:由键值对组成,key为告警编码(不一定为纯数字&…...

python钉钉机器人

上代码 #coding:utf-8 import sys import time import hmac import hashlib import base64 import urllib.parse import requeststimestamp str(round(time.time() * 1000)) secret 你的secret secret_enc secret.encode(utf-8) string_to_sign {}\n{}.format(timestamp, …...

汇编学习笔记

汇编 1. debug指令 -R命令(register) 查看、改变CPU寄存器的内容 r ax 修改AX中的内容 -D命令(display) 查看内存中的内容 -E命令(enter) 改写内存中的内容 -U命令(unassenble反汇编) 将内存中的机器指令翻译成汇编指令 -T命令(trace跟踪) 执行一条机器指令 -A命令…...

混合并行训练框架性能对比

混合并行训练框架性能对比 1. 框架类型 DeepSpeed、Megatron - LM、Colossal - AI、SageMaker、Merak、FasterMoE、Tutel、Whale、Alpa、DAPPLE、Mesh - TensorFlow 2. 可用并行性(Available parallelisms) DNN framework(深度神经网络框架)DP(数据并行,Data Parallelis…...

基于Docker+模拟器的Appium自动化测试(二)

模拟器的设置 打开“夜神模拟器”的系统设置,切换到“手机与网络”页,选中网络设置下的“开启网络连接”和“开启网络桥接模式”复选框,而后选择“静态IP”单选框,在IP地址中输入“192.168.0.105”,网关等内容不再赘述…...

数据结构之线性表之链表(附加一个考研题)

链表的定义 链表的结构: 单链表-初始化 代码实现: 单链表-头插法 代码实现: 这里我给大家分析一下 我们每创建一个新的节点都要插在头节点的后面,我们一定要注意顺序 一定要先让新节点指向头节点指向的下一个节点,…...

etmem

title: 聚焦 Etmem:高效内存管理的新引擎 date: ‘2024-12-31’ category: blog tags: Etmem内存管理性能优化系统资源 sig: storage archives: ‘2024-12’ author:way_back summary: Etmem 是一款专注于内存管理优化的创新工具,通过智能的内存分配、回…...

LangChain4j与Elasticsearch:构建高效的语义嵌入存储

LangChain4j与Elasticsearch:构建高效的语义嵌入存储 一、LangChain4j与Elasticsearch集成概述 1.1 LangChain4j简介 LangChain4j是一个为Java开发者设计的开源库,旨在简化大型语言模型(LLM)在Java应用程序中的集成。它提供了与…...

黄河小浪底水利枢纽泄洪预警广播系统正式上线

24小时站岗、危险自动报警、远程喊话驱离……近日,小浪底水利枢纽和西霞院水利枢纽的泄洪预警广播系统正式上线,通过数字化设施赋能管控水域日常监管,将危险水域各个角落“尽收眼底”,涉水危险行为“无处可藏”。 “前方船只请注意…...

理解生成协同促进?华为诺亚提出ILLUME,15M数据实现多模态理解生成一体化

多模态理解与生成一体化模型,致力于将视觉理解与生成能力融入同一框架,不仅推动了任务协同与泛化能力的突破,更重要的是,它代表着对类人智能(AGI)的一种深层探索。通过在单一模型中统一理解与生成&#xff…...

[文献阅读]ReAct: Synergizing Reasoning and Acting in Language Models

文章目录 摘要Abstract:思考与行为协同化Reason(Chain of thought)ReAct ReAct如何协同推理 响应Action(动作空间)协同推理 结果总结 摘要 ReAct: Synergizing Reasoning and Acting in Language Models [2210.03629] ReAct: Synergizing Reasoning an…...

摄像头监视脚本

摄像头监视脚本,若检测到摄像头画面有变化,保存这一段视频 一、使用方法 1.运行脚本 默认参数Threshold3, Period3, path./recordings python cam.py --threshold30 --period3 --path./recordings 2.参数说明 threshold:摄像头捕获到的画面变化量阈值…...

FreeRTOS的内存管理(选择heap4.c文件的理由)

目录 1. 了解FreeRTOS内存管理 2. 了解内存碎片 3.了解各个heap.c的内存分配方法 1.heap1.c 2.heap2.c 3.heap3.c 4.heap4.c 5.heap5.c 总结: 内存管理是一个系统基本组成部分,FreeRTOS 中大量使用到了内存管理,比如创建任务、信号量…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表,若其中包含环,则输出环的入口节点。 若其中不包含环,则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线, n r n_r nr​ 根接收天线的 MIMO 系…...

【Go语言基础【13】】函数、闭包、方法

文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...

省略号和可变参数模板

本文主要介绍如何展开可变参数的参数包 1.C语言的va_list展开可变参数 #include <iostream> #include <cstdarg>void printNumbers(int count, ...) {// 声明va_list类型的变量va_list args;// 使用va_start将可变参数写入变量argsva_start(args, count);for (in…...

手机平板能效生态设计指令EU 2023/1670标准解读

手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读&#xff0c;综合法规核心要求、最新修正及企业合规要点&#xff1a; 一、法规背景与目标 生效与强制时间 发布于2023年8月31日&#xff08;OJ公报&…...

xmind转换为markdown

文章目录 解锁思维导图新姿势&#xff1a;将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件&#xff08;ZIP处理&#xff09;2.解析JSON数据结构3&#xff1a;递归转换树形结构4&#xff1a;Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...

macOS 终端智能代理检测

&#x1f9e0; 终端智能代理检测&#xff1a;自动判断是否需要设置代理访问 GitHub 在开发中&#xff0c;使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新&#xff0c;例如&#xff1a; fatal: unable to access https://github.com/ohmyzsh/oh…...