2024-12-29-sklearn学习(25)无监督学习-神经网络模型(无监督) 烟笼寒水月笼沙,夜泊秦淮近酒家。
文章目录
- sklearn学习(25) 无监督学习-神经网络模型(无监督)
- 25.1 限制波尔兹曼机
- 25.1.1 图形模型和参数化
- 25.1.2 伯努利限制玻尔兹曼机
- 25.1.3 随机最大似然学习
sklearn学习(25) 无监督学习-神经网络模型(无监督)
文章参考网站:
https://sklearn.apachecn.org/
和
https://scikit-learn.org/stable/
25.1 限制波尔兹曼机
限制玻尔兹曼机(Restricted Boltzmann machines,简称 RBM)是基于概率模型的无监督非线性特征学习器。当用 RBM 或多层次结构的RBMs 提取的特征在馈入线性分类器(如线性支持向量机或感知机)时通常会获得良好的结果。
该模型对输入的分布作出假设。目前,scikit-learn 只提供了 BernoulliRBM
,它假定输入是二值(binary values)的,或者是 0 到 1 之间的值,每个值都编码特定特征被激活的概率。
RBM 尝试使用特定图形模型最大化数据的似然。它所使用的参数学习算法(随机最大似然)可以防止特征表示偏离输入数据。这使得它能捕获到有趣的特征,但使得该模型对于小数据集和密度估计不太有效。
该方法在初始化具有独立 RBM 权值的深度神经网络时得到了广泛的应用。这种方法是无监督的预训练。
示例:
- Restricted Boltzmann Machine features for digit classification
25.1.1 图形模型和参数化
RBM 的图形模型是一个全连接的二分图。
节点是随机变量,其状态取决于它连接到的其他节点的状态。这个模型可通过连接的权重、以及每个可见或隐藏单元的偏置项进行参数化,为了简单起见,我们省略了上图中的偏置项。
用能量函数衡量联合概率分布的质量:
E ( v , h ) = − ∑ i ∑ j w i j v i h j − ∑ i b i v i − ∑ j c j h j E(\mathbf{v}, \mathbf{h}) = -\sum_i \sum_j w_{ij}v_ih_j - \sum_i b_iv_i - \sum_j c_jh_j E(v,h)=−i∑j∑wijvihj−i∑bivi−j∑cjhj
在上面的公式中, b \mathbf{b} b 和 c \mathbf{c} c 分别是可见层和隐藏层的偏置向量。模型的联合概率是根据能量来定义的:
P ( v , h ) = e − E ( v , h ) Z P(\mathbf{v}, \mathbf{h}) = \frac{e^{-E(\mathbf{v}, \mathbf{h})}}{Z} P(v,h)=Ze−E(v,h)
“限制”是指模型的二分图结构,它禁止隐藏单元之间或可见单元之间的直接交互。 这代表以下条件独立性成立:
h i ⊥ h j ∣ v v i ⊥ v j ∣ h h_i \bot h_j | \mathbf{v} \\ v_i \bot v_j | \mathbf{h} hi⊥hj∣vvi⊥vj∣h
二分图结构允许使用高效的块吉比斯采样(block Gibbs sampling)进行推断。
25.1.2 伯努利限制玻尔兹曼机
在 BernoulliRBM
中,所有单位都是二进制随机单元。这意味着输入数据应该是二值,或者是在 0 和 1 之间的实数值,其表示可见单元活跃或不活跃的概率。 这是一个很好的字符识别模型,其中的关注点是哪些像素是活跃的,哪些不是。 对于自然场景的图像,它因为背景、深度和相邻像素趋势取相同的值而不再适合。
每个单位的条件概率分布由其接收的输入的 logistic sigmoid函数给出:
P ( v i = 1 ∣ h ) = σ ( ∑ j w i j h j + b i ) P ( h i = 1 ∣ v ) = σ ( ∑ i w i j v i + c j ) P(v_i=1|\mathbf{h}) = \sigma(\sum_j w_{ij}h_j + b_i) \\P(h_i=1|\mathbf{v}) = \sigma(\sum_i w_{ij}v_i + c_j) P(vi=1∣h)=σ(j∑wijhj+bi)P(hi=1∣v)=σ(i∑wijvi+cj)
其中 σ \sigma σ 是 logistic sigmoid函数:
σ ( x ) = 1 1 + e − x \sigma(x) = \frac{1}{1 + e^{-x}} σ(x)=1+e−x1
25.1.3 随机最大似然学习
在 BernoulliRBM
函数中实现的训练算法被称为随机最大似然(SML)或持续对比发散(PCD)。由于数据的似然函数的形式,直接优化最大似然是不可行的:
log P ( v ) = log ∑ h e − E ( v , h ) − log ∑ x , y e − E ( x , y ) \log P(v) = \log \sum_h e^{-E(v, h)} - \log \sum_{x, y} e^{-E(x, y)} logP(v)=logh∑e−E(v,h)−logx,y∑e−E(x,y)
为了简单起见,上面的等式是针对单个训练样本所写的。相对于权重的梯度由对应于上述的两个项构成。根据它们的符号,它们通常被称为正梯度和负梯度。这种实现按照小批量样本对梯度进行计算。
在最大化对数似然度(maximizing the log-likelihood)的情况下,正梯度使模型更倾向于与观察到的训练数据兼容的隐藏状态。RBM 的二分体结构使他可以被高效地计算。然而,负梯度是棘手的。其目标是降低模型偏好的联合状态的能量,从而使数据保持真实。它可以使用块吉比斯采样通过马尔可夫链蒙特卡罗来粗略估计,它通过迭代地对每个 v v v 和 h h h 进行交互采样,直到链混合。以这种方式产生的样本有时被称为幻想粒子。这是低效的,并且我们很难确定马可夫链是否混合。
对比发散方法建议在经过少量迭代后停止链,迭代数 k k k 通常为 1。该方法快速且方差小,但样本远离模型分布。
持续对比发散解决了这个问题。在 PCD 中,我们保留了多个链(幻想粒子)来在每个权重更新之后更新 k k k 个吉比斯采样步骤,而不是每次需要梯度时都启动一个新的链,并且只执行一个吉比斯采样步骤。这使得粒子能更彻底地探索空间。
参考资料:
“A fast learning algorithm for deep belief nets” G. Hinton, S. Osindero, Y.-W. Teh, 2006
“Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient” T. Tieleman, 2008
相关文章:

2024-12-29-sklearn学习(25)无监督学习-神经网络模型(无监督) 烟笼寒水月笼沙,夜泊秦淮近酒家。
文章目录 sklearn学习(25) 无监督学习-神经网络模型(无监督)25.1 限制波尔兹曼机25.1.1 图形模型和参数化25.1.2 伯努利限制玻尔兹曼机25.1.3 随机最大似然学习 sklearn学习(25) 无监督学习-神经网络模型(无监督) 文章参考网站&a…...

RSA e与phi不互质(AMM算法进行有限域开根)
e与phi不互质 这一部分学习来自trup师傅的博客 针对CTFer的e与phi不互素的问题 - 跳跳糖 1:m^t<n from Crypto.Util.number import * from secret import flag flag bflag{*********} m bytes_to_long(flag) p getPrime(1024) q getPrime(1024) n p * q …...

网络物理互连
案例简介 美乐公司为新创建公司,公司现需要架设网络,需要下属分公司通过路由器与外网服务器联通,请使用Packet Tracer, 按照任务要求完成实验。实验中需配置设备或端口的IP地址。 1、绘制拓扑图 2、配置ip地址 3、配置路由ip R0 …...

论文研读:Text2Video-Zero 无需微调,仅改动<文生图模型>推理函数实现文生视频(Arxiv 2023-03-23)
论文名:Text2Video-Zero: Text-to-Image Diffusion Models are Zero-Shot Video Generators 1. 摘要 1.1 方法总结 通过潜空间插值, 实现动作连续帧。 以第一帧为锚定,替换原模型的self-attention,改为cross-attention 实现 保证图片整体场…...

服务端错误的处理和web安全检测
文章目录 I 服务端错误的处理业务返回码处理前端处理业务返回码nginx处理http状态码II web安全检测区分服务器类型主机扫漏III 使用 micro_httpd 搭建一个PHP站点步骤下载micro_httpd 并安装它配置micro_httpd 来服务PHP文件I 服务端错误的处理 服务端发生错误时,返回给前端的…...

鸿蒙TCPSocket通信模拟智能家居模拟案例
效果图 一、智能家居热潮下的鸿蒙契机 在当下科技飞速发展的时代,智能家居已如浪潮般席卷而来,深刻地改变着我们的生活方式。从能依据环境光线自动调节亮度的智能灯具,到可远程操控、精准控温的智能空调,再到实时监测健康数据的智…...

SQL-leetcode-197. 上升的温度
197. 上升的温度 表: Weather ---------------------- | Column Name | Type | ---------------------- | id | int | | recordDate | date | | temperature | int | ---------------------- id 是该表具有唯一值的列。 没有具有相同 recordDate 的不同行。 该表包…...

C++系列关键字static
文章目录 1.静态变量2.静态成员变量 1.静态变量 在C的,静态变量是一个非常有用的特性,它在程序执行期间只初始化一次,并在程序的整个执行期间都保持其值。 1.局部静态变量。定义在函数中,只初始化一次,不像普通的局部…...

使用Fn Connect之后,如何访问到其他程序页面?原来一直都可以!
前言 昨天小白讲过在飞牛上登录Fn Connect,就可以实现远程访问家里的NAS。 接着就有小伙伴咨询:如何远程访问到家里其他需要使用不同端口号才能访问到的软件,比如Jellyfin、Emby等。 这个小白在写文章的时候确实没有考虑到,因为…...

探索Composable Architecture:小众但高效的现代框架技术
近年来,随着应用规模和复杂性的不断提升,对开发效率和可维护性的要求也水涨船高。特别是在领域驱动设计 (DDD) 和反应式编程 (Reactive Programming) 的趋势影响下,一些小众但极具潜力的框架应运而生。本篇博客将深入探讨一种日益受到关注但尚…...

改投论文时如何重构
摘要: 不同期刊和会议对于论文的风格、页数限制等方面有一些差别, 论文在某个地方被拒, 改投别处时需要进行重构. 本贴描述重构的基本方案. 你的衣柜乱糟糟的, 如何清理呢? 方案 A. 把不喜欢的衣服一件件丢掉.方案 B. 把衣服全部丢出来, 然后再把喜欢的衣服一件件放进去. 对…...

P8打卡——YOLOv5-C3模块实现天气识别
🍨 本文为🔗365天深度学习训练营中的学习记录博客🍖 原作者:K同学啊 1.检查GPU import torch import torch.nn as nn import torchvision.transforms as transforms import torchvision from torchvision import transforms, dat…...

基于微信小程序的校园点餐平台的设计与实现(源码+SQL+LW+部署讲解)
文章目录 摘 要1. 第1章 选题背景及研究意义1.1 选题背景1.2 研究意义1.3 论文结构安排 2. 第2章 相关开发技术2.1 前端技术2.2 后端技术2.3 数据库技术 3. 第3章 可行性及需求分析3.1 可行性分析3.2 系统需求分析 4. 第4章 系统概要设计4.1 系统功能模块设计4.2 数据库设计 5.…...

PyTorch快速入门教程【小土堆】之完整模型训练套路
视频地址完整的模型训练套路(一)_哔哩哔哩_bilibili import torch import torchvision from model import * from torch import nn from torch.utils.data import DataLoader# 准备数据集 train_data torchvision.datasets.CIFAR10(root"CIFAR10&…...

【AIGC】 ChatGPT实战教程:如何高效撰写学术论文引言
💥 欢迎来到我的博客!很高兴能在这里与您相遇! 首页:GPT-千鑫 – 热爱AI、热爱Python的天选打工人,活到老学到老!!!导航 - 人工智能系列:包含 OpenAI API Key教程, 50个…...

TTL 传输中过期问题定位
问题: 工作环境中有一个acap的环境,ac的wan口ip是192.168.186.195/24,ac上lan上有vlan205,其ip子接口地址192.168.205.1/24,ac采用非nat模式,而是路由模式,在上级路由器上有192.168.205.0/24指向…...

非docker方式部署openwebui过程记录
之前一直用docker方式部署openwebui,结果这东西三天两头升级,我这一升级拉取docker镜像硬盘空间嗖嗖的占用,受不了,今天改成了直接部署,以下是部署过程记录。 一、停止及删除没用的docker镜像占用的硬盘空间 docker s…...

大模型的prompt的应用二
下面总结一些在工作中比较实用的prompt应用。还可以到以下网站参考更多的prompt AI Prompts - WayToAGI 举个例子,让大模型写一份周报 # 角色:智能周报编写助手 ## 背景: 需要根据产品经理提供的简要周报框架,补充完整的周报内容。 ## 注意事项: 言简意赅,重点突…...

ubuntu 22.04安装ollama
1. 顺利的情况 按照官网的提示,执行下面的命令: curl -fsSL https://ollama.com/install.sh | sh如果网络畅通,github访问也没有问题,那就等待安装完成就行 2. 不顺利的情况 由于众所周知的情况,国内网络访问githu…...

从企业级 RAG 到 AI Assistant,阿里云 Elasticsearch AI 搜索技术实践
在过去一年中,基座大模型技术的快速迭代推动了 AI 搜索的演进,主要体现在以下几个方面: 1.搜索技术链路重构 基于大模型的全面重构正在重塑 AI 搜索的技术链路。从数据采集、文档解析、向量检索到查询分析、意图识别、排序模型和知识图谱等…...

Redis--高可用(主从复制、哨兵模式、分片集群)
高可用(主从复制、哨兵模式、分片集群) 高可用性Redis如何实现高可用架构?主从复制原理1. 全量同步2. 命令传播3. 增量同步 Redis Sentinel(哨兵模式)为什么要有哨兵模式?哨兵机制是如何工作的?…...

框架(Mybatis配置日志)
mybatis配置日志输出 先导入日志依赖 <dependency><groupId>log4j</groupId><artifactId>log4j</artifactId><version>1.2.17</version></dependency> 编写log4j.properties配置文件 # Root logger option log4j.rootLogge…...

人工智能-Python上下文管理器-with
概念 Python提供了 with 语句的这种写法,既简单又安全,并且 with 语句执行完成以后自动调用关闭文件操作,即使出现异常也会自动调用关闭文件操作;其效果等价于try-except-finally with 拥有以下两个魔术方法 __enter__() 上文管理…...

每天40分玩转Django:Django类视图
Django类视图 一、知识要点概览表 类别知识点掌握程度要求基础视图View、TemplateView、RedirectView深入理解通用显示视图ListView、DetailView熟练应用通用编辑视图CreateView、UpdateView、DeleteView熟练应用Mixin机制ContextMixin、LoginRequiredMixin理解原理视图配置U…...

自动化测试之Pytest框架(万字详解)
Pytest测试框架 一、前言二、安装2.1 命令行安装2.2 验证安装 三、pytest设计测试用例注意点3.1 命名规范3.2 断言清晰3.3 fixture3.4 参数化设置3.5 测试隔离3.6 异常处理3.7 跳过或者预期失败3.8 mocking3.9 标记测试 四、以案例初入pytest4.1 第一个pytest测试4.2 多个测试分…...

基于51单片机(STC32G12K128)和8X8彩色点阵屏(WS2812B驱动)的小游戏《贪吃蛇》
目录 系列文章目录前言一、效果展示二、原理分析三、各模块代码1、定时器02、矩阵按键模块3、8X8彩色点阵屏 四、主函数总结 系列文章目录 前言 《贪吃蛇》,一款经典的、怀旧的小游戏,单片机入门必写程序。 以《贪吃蛇》为载体,熟悉各种屏幕…...

2011-2020年各省粗离婚率数据
2011-2020年各省粗离婚率数据 1、时间:2011-2020年 2、来源:国家统计局 3、指标:地区、年份、粗离婚率 4、范围:31省 5、指标解释:粗离婚率指某地区当年离婚对数占该地区年平均人口的比重。计算公式为:…...

C++高级编程技巧:模板元编程与性能优化实践
C高级编程技巧:模板元编程与性能优化实践 在C编程的世界里,模板元编程(Template Metaprogramming)是一项强大的技术,它允许程序员在编译时而非运行时进行计算和类型操作。这项技术的核心在于C模板系统,它…...

Mac 版本向日葵退出登录账号
找遍整个软件,Mac 版本的向日葵甚至逆天到没有提供退出登录的功能… 随后我发现可以直接删除向日葵的配置文件达到退出登录的效果,具体操作如下: cd /etc # 确认存在 orayconfig.conf 文件 ls orayconfig.conf # 删除 sudo rm -f oray…...

SOLIDWORKS Composer在产品设计、制造与销售中的应用
SOLIDWORKS Composer是一款专为技术团队设计的高效沟通工具,广泛应用于产品设计、制造、销售及售后等领域。它能从复杂的CAD数据中提取关键信息,轻松转化为高质量的产品文档、交互式3D动画及说明视频,显著提升产品沟通效率。 Composer擅长制…...