Apache SeaTunnel深度优化:CSV字段分割能力的增强
Apache SeaTunnel深度优化:CSV字段分割能力的增强
一、Apache SeaTunnel与CSV处理
1.1 Apache SeaTunnel简介
Apache SeaTunnel(原名Waterdrop)是一个分布式、高性能的数据集成平台,支持海量数据的实时同步。它允许用户通过配置文件来描述数据流,从而实现数据从一个源到另一个目的地的传输和转换。
1.2 CSV文件处理的重要性
CSV(逗号分隔值)文件是一种常见的数据交换格式。在数据集成任务中,经常需要读取CSV文件,将其内容转换为结构化数据,然后进行进一步的处理和分析。因此,增强CSV文件的读取和字段分割能力对于Apache SeaTunnel来说至关重要。
二、CSV字段分割的技术挑战
2.1 字段分割的复杂性
CSV文件的字段可能包含逗号、换行符或其他特殊字符,这使得字段分割成为一个复杂的问题。此外,字段可能被引号包围,使得字段内部的逗号不再是字段分隔符。
2.2 分割策略的选择
为了准确地分割CSV字段,需要选择合适的分割策略。这包括确定字段分隔符、引号字符以及转义规则。Apache SeaTunnel通过配置来灵活定义这些规则,以适应不同的CSV文件格式。
三、Apache SeaTunnel的CSV读取增强
3.1 分割字段的实现
Apache SeaTunnel通过CsvDeserializationSchema类来实现CSV文件的读取和字段分割。这个类允许用户自定义分隔符、日期格式化器等,以适应不同的CSV格式。
public class CsvDeserializationSchema {private SeaTunnelRowType seaTunnelRowType;private String[] separators;private DateUtils.Formatter dateFormatter;private DateTimeUtils.Formatter dateTimeFormatter;private TimeUtils.Formatter timeFormatter;public static Builder builder() {return new Builder();}public SeaTunnelRow deserialize(byte[] message) throws IOException {String content = new String(message);ObjectMapper objectMapper = new ObjectMapper();Map<Integer, String> splitsMap = objectMapper.readValue(content, getTypeReference());Object[] objects = new Object[seaTunnelRowType.getTotalFields()];for (int i = 0; i < objects.length; i++) {objects[i] = convert(splitsMap.get(i), seaTunnelRowType.getFieldType(i), 0);}return new SeaTunnelRow(objects);}private Map<Integer, String> splitLineBySeaTunnelRowType(String line, SeaTunnelRowType seaTunnelRowType, int level) {String[] splits = splitLineWithCsvMethod(line, separators[level].charAt(0));LinkedHashMap<Integer, String> splitsMap = new LinkedHashMap<>();SeaTunnelDataType<?>[] fieldTypes = seaTunnelRowType.getFieldTypes();for (int i = 0; i < splits.length; i++) {splitsMap.put(i, splits[i]);}if (fieldTypes.length > splits.length) {for (int i = splits.length; i < fieldTypes.length; i++) {splitsMap.put(i, null);}}return splitsMap;}private String[] splitLineWithCsvMethod(String line, char sep) {CSVParser csvParser = new CSVParserBuilder().withSeparator(sep).build();try (CSVReader reader = new CSVReaderBuilder(new StringReader(line)).withCSVParser(csvParser).build()) {Iterator<String[]> iterator = reader.iterator();if (iterator.hasNext()) {return iterator.next();}return new String[0];} catch (Exception e) {return new String[]{line};}}
}
3.2 配置灵活性
用户可以通过Builder模式灵活配置CSV读取器,包括设置字段分隔符、日期和时间格式化器等。
public class CsvDeserializationSchema.Builder {private SeaTunnelRowType seaTunnelRowType;private String[] separators = new String[]{","}; // 默认逗号分隔private DateUtils.Formatter dateFormatter;private DateTimeUtils.Formatter dateTimeFormatter;private TimeUtils.Formatter timeFormatter;public Builder seaTunnelRowType(SeaTunnelRowType seaTunnelRowType) {this.seaTunnelRowType = seaTunnelRowType;return this;}public Builder delimiter(String delimiter) {this.separators[0] = delimiter;return this;}public Builder separators(String[] separators) {this.separators = separators;return this;}public Builder dateFormatter(DateUtils.Formatter dateFormatter) {this.dateFormatter = dateFormatter;return this;}public Builder dateTimeFormatter(DateTimeUtils.Formatter dateTimeFormatter) {this.dateTimeFormatter = dateTimeFormatter;return this;}public Builder timeFormatter(TimeUtils.Formatter timeFormatter) {this.timeFormatter = timeFormatter;return this;}public CsvDeserializationSchema build() {return new CsvDeserializationSchema(seaTunnelRowType, separators, dateFormatter, dateTimeFormatter, timeFormatter);}
}
四、性能优化与最佳实践
4.1 并行处理
对于大型CSV文件,Apache SeaTunnel可以利用并行处理来提高读取效率。通过将文件分割成多个部分并行处理,可以显著减少处理时间。
4.2 内存管理
在读取和解析CSV文件时,需要注意内存的使用。Apache SeaTunnel通过优化数据结构和减少不必要的对象创建,有效地管理内存使用。
4.3 I/O优化
使用NIO(New I/O)库进行文件读取,可以进一步提高I/O效率。Apache SeaTunnel可以配置为使用NIO来处理文件I/O,从而提高性能。
五、总结
Apache SeaTunnel通过增强对CSV文件的读取和字段分割能力,提供了一个灵活且高效的数据集成解决方案。通过自定义分隔符、格式化器等配置,用户可以轻松适应不同的CSV文件格式。此外,性能优化措施如并行处理、内存管理和I/O优化,使得Apache SeaTunnel能够高效地处理大规模数据集。这些增强功能不仅提升了数据处理的性能,也扩展了Apache SeaTunnel在各种数据集成场景中的应用范围。
相关文章:
Apache SeaTunnel深度优化:CSV字段分割能力的增强
Apache SeaTunnel深度优化:CSV字段分割能力的增强 一、Apache SeaTunnel与CSV处理 1.1 Apache SeaTunnel简介 Apache SeaTunnel(原名Waterdrop)是一个分布式、高性能的数据集成平台,支持海量数据的实时同步。它允许用户通过配置…...
免费下载 | 2024年具身大模型关键技术与应用报告
这份报告的核心内容涉及具身智能的关键技术与应用,主要包括以下几个方面: 具身智能的定义与重要性: 具身智能是基于物理身体进行感知和行动的智能系统,通过与环境的交互获取信息、理解问题、做出决策并实现行动,产生智…...
SSM-Spring-AOP
目录 1 AOP实现步骤(以前打印当前系统的时间为例) 2 AOP工作流程 3 AOP核心概念 4 AOP配置管理 4-1 AOP切入点表达式 4-1-1 语法格式 4-1-2 通配符 4-2 AOP通知类型 五种通知类型 AOP通知获取数据 获取参数 获取返回值 获取异常 总结 5 …...
jenkins修改端口以及开机自启
修改Jenkins端口 方式一:通过配置文件修改(以CentOS为例) 找到配置文件:在CentOS系统中,通常可以在/etc/sysconfig/jenkins文件中修改Jenkins的配置。如果没有这个文件,也可以查看/etc/default/jenkins&…...
按照人们阅读Excel习惯来格式化BigDecimal
1、环境/问题描述 使用springboot发送邮件(附件)的方式将月度报表发送给领导查阅,数据是准确的,领导基本满意。 就是对一些数字的格式化提出了改进建议,比如不要让大数字自动转为科学计数法、浮点数小数点后都是0就不要带出来,根…...
IDEA开发Java应用的初始化设置
一、插件安装 如下图所示: 1、Alibaba Java Coding Guidelines 2.1.1 阿里开发者规范,可以帮忙本地自动扫描出不符合开发者规范的代码,甚至是代码漏洞提示。 右击项目,选择《编码规约扫描》,可以进行本地代码规范扫…...
Java网络套接字
在Java的开发中,有一个很重要!很重要!很重要!的东西,叫做网络套接字,它被广泛的用来二次开发服务,比如大数据中台的服务链路调用等。 它的实现原理是依靠三次握手来完成通信的建立,…...
2025差旅平台推荐:一体化降本30%
医药行业因其高度专业化的特点,同时在运营过程中又极为依赖供应链和销售网络,因此差旅管理往往成为成本控制的重要环节。本期,我们以差旅平台分贝通签约伙伴——某知名药企为例,探讨企业如何通过差旅一体化管理,在全流…...
多个DataV遍历生成
DataV是数据可视化工具 与Echart类似 相对Echart图标边框 装饰可选官网DataV 安装 npm install kjgl77/datav-vue3main.ts import DataVVue3 from kjgl77/datav-vue3 app.use(DataVVue3)多个DataV遍历生成 Vue3viteDataV为例:<template><div w50rem h25rem flex&qu…...
mysql_real_connect的概念和使用案例
mysql_real_connect 是 MySQL C API 中的一个函数,用于建立一个到 MySQL 数据库服务器的连接。这个函数尝试建立一个连接,并根据提供的参数进行连接设置。 概念 以下是 mysql_real_connect 函数的基本概念: 函数原型:MYSQL *my…...
Python性能分析深度解析:从`cProfile`到`line_profiler`的优化之路
《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 在软件开发过程中,性能优化是提升应用质量和用户体验的关键环节。Python作为广泛应用的高级编程语言,其性能分析工具为开发者提供了强大的…...
Momentum Contrast for Unsupervised Visual Representation Learning论文笔记
文章目录 论文地址动量队列对比学习的infoNCE loss为什么需要动量编码器对比学习moco方法中的动量Encoder为什么不能与梯度Encoder完全相同为什么动量编码器和梯度编码器不能完全相同?总结: 我理解,正负样本应该经过同一个encoder,…...
用户界面的UML建模07
4.2 抽象表示层的行为(Abstract Presentation Behaviour) AbstractForm 类定义了一组如下所示的四种操作: showForm() , getData() , sendConfirmation() 和sendCancellation()。在该阶段的设计过程(desig…...
Node.js中使用Joi 和 express-joi-validation进行数据验证和校验
在进行项目开发的过程中,很多时候系统对用户输入的数据会进行严格校验的,通常我们会以“前端校验为辅,后端校验为主”的思想进行校验处理。 后端接口校验的时候,是只能一直使用if进行逻辑判断呢,还是有更加方便的方法…...
InstructGPT:基于人类反馈训练语言模型遵从指令的能力
大家读完觉得有意义记得关注和点赞!!! 大模型进化树,可以看到 InstructGPT 所处的年代和位置。来自 大语言模型(LLM)综述与实用指南(Amazon,2023) 目录 摘要 1 引言 …...
jrc水体分类对水体二值掩码修正
使用deepwatermap生成的水体二值掩码中有部分区域由于被云挡住无法识别,造成水体不连续是使用jrc离线数据进行修正,jrc数据下载连接如下:https://global-surface-water.appspot.com/download 选择指定区域的数据集合下载如图: 使…...
营销/CDP/MA/SCRM
最近几年面向企业用户的营销系统,cdp,ma,scrm等发展迅速,下面就简单介绍一下这些系统。 架构图 架构图中显示了CDP,MA,SCRM的核心功能,其实还有基础底座的功能。 比如统一登录,权限…...
免费CDN加速,零成本提升网站速度!
1. 起因 免备案的服务器要么在海外,要么是国内通过内网穿透才能访问,这两种方法好处是免费,坏处是延迟太高,有的地区延迟能到四五百甚至超时,这样明显是不行的。 所以需套一个cdn来加速,在2024年࿰…...
2024-12-29-sklearn学习(25)无监督学习-神经网络模型(无监督) 烟笼寒水月笼沙,夜泊秦淮近酒家。
文章目录 sklearn学习(25) 无监督学习-神经网络模型(无监督)25.1 限制波尔兹曼机25.1.1 图形模型和参数化25.1.2 伯努利限制玻尔兹曼机25.1.3 随机最大似然学习 sklearn学习(25) 无监督学习-神经网络模型(无监督) 文章参考网站&a…...
RSA e与phi不互质(AMM算法进行有限域开根)
e与phi不互质 这一部分学习来自trup师傅的博客 针对CTFer的e与phi不互素的问题 - 跳跳糖 1:m^t<n from Crypto.Util.number import * from secret import flag flag bflag{*********} m bytes_to_long(flag) p getPrime(1024) q getPrime(1024) n p * q …...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
调用支付宝接口响应40004 SYSTEM_ERROR问题排查
在对接支付宝API的时候,遇到了一些问题,记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
