使用 `llama_index` 构建智能问答系统:多种文档切片方法的评估
使用 `llama_index` 构建智能问答系统:多种文档切片方法的评估
- 代码优化与解析
- 1. **代码结构优化**
- 2. **日志管理**
- 3. **环境变量管理**
- 4. **模型初始化**
- 5. **提示模板更新**
- 6. **问答函数优化**
- 7. **索引构建与查询引擎**
- 8. **节点解析器测试**
- 总结
在现代自然语言处理(NLP)应用中,构建一个高效的问答系统是一个常见的需求。llama_index
是一个强大的工具,可以帮助我们快速构建基于文档的问答系统。本文将介绍如何优化和解析一个基于 llama_index
的问答系统代码,并逐步解析其核心功能。
代码优化与解析
1. 代码结构优化
我们将代码拆分为多个函数,使得代码结构更清晰,便于维护和扩展。以下是优化后的代码结构:
update_prompt_template
:用于动态更新查询引擎的提示模板。ask_question
:向查询引擎提问并输出结果。load_documents
:加载指定目录下的文档。build_index_and_query_engine
:构建索引并创建查询引擎。main
:主函数,负责程序的整体逻辑。
这种模块化的设计使得代码更易于理解和扩展。
2. 日志管理
为了避免不必要的警告信息干扰,我们使用 logging.basicConfig(level=logging.ERROR)
来设置日志级别为 ERROR
。这样可以确保只有重要的错误信息被输出。
import logging
logging.basicConfig(level=logging.ERROR)
3. 环境变量管理
我们使用 dotenv
库加载 .env
文件中的环境变量,确保敏感信息(如 API Key)不会硬编码在代码中。
from dotenv import find_dotenv, load_dotenv
load_dotenv(find_dotenv())
4. 模型初始化
我们初始化 OpenAI 的 LLM 和 Embedding 模型,确保模型配置一致且易于修改。
llm_client = OpenAI(model="gpt-4",api_base=os.environ["OPENAI_BASE_URL"],api_key=os.environ["OPENAI_API_KEY"],is_chat_model=True,seed=42,
)embed_client = OpenAIEmbedding(model="text-embedding-3-large",api_base=os.environ["OPENAI_EMBED_BASE_URL"],api_key=os.environ["OPENAI_API_KEY"],
)
5. 提示模板更新
update_prompt_template
函数用于动态更新查询引擎的提示模板,确保问答系统能够根据需求调整回答风格。
def update_prompt_template(query_engine, qa_prompt_tmpl_str=None):if qa_prompt_tmpl_str is None:qa_prompt_tmpl_str = ("你叫公司小蜜,是公司的答疑机器人。你需要仔细阅读参考信息,然后回答大家提出的问题。""注意事项:\n""1. 根据上下文信息而非先验知识来回答问题。\n""2. 如果是工具咨询类问题,请务必给出下载地址链接。\n""3. 如果员工部门查询问题,请务必注意有同名员工的情况,可能有2个、3个甚至更多同名的人\n""以下是参考信息。""---------------------\n""{context_str}\n""---------------------\n""问题:{query_str}\n。""回答:")qa_prompt_tmpl = PromptTemplate(qa_prompt_tmpl_str)query_engine.update_prompts({"response_synthesizer:text_qa_template": qa_prompt_tmpl})return query_engine
6. 问答函数优化
ask_question
函数负责处理用户的问题,输出问题和回答,并展示参考文档。通过检查 response
对象是否有 print_response_stream
方法,确保兼容不同的响应类型。
def ask_question(question, query_engine):update_prompt_template(query_engine)print('=' * 50)print(f'🤔 问题:{question}')print('=' * 50 + '\n')response = query_engine.query(question)print('🤖 回答:')if hasattr(response, 'print_response_stream') and callable(response.print_response_stream):response.print_response_stream()else:print(str(response))print('\n' + '-' * 50)print('📚 参考文档:\n')for i, source_node in enumerate(response.source_nodes, start=1):print(f'文档 {i}:')print(source_node)print()print('-' * 50)return response
7. 索引构建与查询引擎
build_index_and_query_engine
函数负责构建索引并创建查询引擎。根据不同的节点解析器(如 TokenTextSplitter
、SentenceSplitter
等),生成不同的查询引擎。
def build_index_and_query_engine(documents, embed_model, llm, node_parser, postprocessors=None):print(f"\n{'=' * 50}")print(f"🔍 正在使用 {node_parser.__class__.__name__} 方法进行测试...")print(f"{'=' * 50}\n")print("📑 正在处理文档...")nodes = node_parser.get_nodes_from_documents(documents)index = VectorStoreIndex(nodes, embed_model=embed_model)query_engine = index.as_query_engine(similarity_top_k=5,streaming=True,llm=llm,node_postprocessors=postprocessors if postprocessors else [])return query_engine
8. 节点解析器测试
我们使用不同的节点解析器(如 TokenTextSplitter
、SentenceSplitter
等)对文档进行处理,并测试其效果。对于 SentenceWindowNodeParser
,还需要使用 MetadataReplacementPostProcessor
进行后处理。
node_parsers = [TokenTextSplitter(chunk_size=1024, chunk_overlap=20),SentenceSplitter(chunk_size=512, chunk_overlap=50),SentenceWindowNodeParser.from_defaults(window_size=3,window_metadata_key="window",original_text_metadata_key="original_text"),SemanticSplitterNodeParser(buffer_size=1,breakpoint_percentile_threshold=95,embed_model=embed_client),MarkdownNodeParser()
]for parser in node_parsers:if isinstance(parser, SentenceWindowNodeParser):postprocessors = [MetadataReplacementPostProcessor(target_metadata_key="window")]else:postprocessors = Nonequery_engine = build_index_and_query_engine(documents, embed_client, llm_client, parser, postprocessors)ask_question(question, query_engine)
总结
通过优化代码结构、模块化处理、日志管理和环境变量管理,代码的可读性和可维护性得到了显著提升。同时,通过不同的节点解析器对文档进行处理,可以更好地理解不同解析器的效果和适用场景。希望这篇博客对你理解和使用 llama_index
库有所帮助!
相关文章:
使用 `llama_index` 构建智能问答系统:多种文档切片方法的评估
使用 llama_index 构建智能问答系统:多种文档切片方法的评估 代码优化与解析1. **代码结构优化**2. **日志管理**3. **环境变量管理**4. **模型初始化**5. **提示模板更新**6. **问答函数优化**7. **索引构建与查询引擎**8. **节点解析器测试** 总结 在现代自然语言…...

【大模型】7 天 AI 大模型学习
7 天 AI 大模型学习 Day 2 今天是 7 天AI 大模型学习的第二天 😄,今天我将会学习 Transformer 、Encoder-based and Decoder-Based LLMs 等 。如果有感兴趣的,就和我一起开始吧 ~ 课程链接 :2025年快速吃透AI大模型&am…...
软件工程大复习之(四)——面向对象与UML
4.1 面向对象概述 面向对象(OO)是一种编程范式,它将数据和处理数据的方法封装在对象中。面向对象的主要概念包括: 对象:实例化的数据和方法的集合。类:对象的蓝图或模板。封装:隐藏对象的内部…...

【Linux】shell命令
目录 shell的基本命令 shell - 贝壳 外在保护工具 用户、shell、内核、硬件之间的关系 解析器的分类: shell命令格式 history -历史记录查询 修改环境变量的值: shell中的特殊字符 通配符 管道 | 输入输出重定向 命令置换符 shell的基本命…...

ValuesRAG:以检索增强情境学习强化文化对齐
随着大型语言模型(LLMs)的迅猛发展,其在各个领域展现出强大的能力。然而,训练数据中西方中心主义的倾向,使得 LLMs 在文化价值观一致性方面面临严峻挑战,这一问题在跨文化场景中尤为突出,可能导…...

【机器学习篇】交通革命:机器学习如何引领未来的道路创新
嘿,你知道吗?机器学习正在交通领域掀起一场革命啦!它将如何引领未来道路创新呢 本文有精彩的 C 代码演示、实用的图片解释,还有超多干货,保证让你大开眼界,点赞收藏关注, 开启一场奇妙的探索之…...

DeepSeek-V3 通俗详解:从诞生到优势,以及与 GPT-4o 的对比
1. DeepSeek 的前世今生 1.1 什么是 DeepSeek? DeepSeek 是一家专注于人工智能技术研发的公司,致力于打造高性能、低成本的 AI 模型。它的目标是让 AI 技术更加普惠,让更多人能够用上强大的 AI 工具。 1.2 DeepSeek-V3 的诞生 DeepSeek-V…...

把vue项目或者vue组件发布成npm包或者打包成lib库文件本地使用
将vue项目发布成npm库文件,第三方通过npm依赖安装使用;使用最近公司接了一个项目,这个项目需要集成到第三方页面,在第三方页面点击项目名称,页面变成我们的项目页面;要求以npm库文件提供给他们;…...

【STC库函数】Compare比较器的使用
如果我们需要比较两个点的电压,当A点高于B点的时候我们做一个操作,当B点高于A点的时候做另一个操作。 我们除了加一个运放或者比较器,还可以直接使用STC内部的一个比较器。 正极输入端可以是P37、P50、P51,或者从ADC的十六个通道…...

单片机-独立按键矩阵按键实验
1、按键介绍 按键管脚两端距离长的表示默认是导通状态,距离短的默认是断开状态, 如果按键按下,初始导通状态变为断开,初始断开状态变为导通 我们开发板是采用软件消抖,一般来说一个简单的按键消抖就是先读取按键的状…...
若要把普通表转成分区表,就需要先新建分区表,然后把普通表中的数据导入新建分区表。 具体怎么导入?
将普通表转换为分区表并导入数据是一个常见的数据库管理任务。以下是详细的步骤和示例,帮助你在 GaussDB 中完成这一过程: 1. 创建分区表 首先,你需要创建一个新的分区表,定义好分区键和分区策略。假设你有一个普通表 orders&am…...
XXX公司面试真题
一、一面问题 1.线程池的主要参数 核心线程数最大线程数空闲线程存活时间存活时间单位任务队列线程工厂拒绝策略允许核心线程超时 2. 线程的状态 新建状态就绪状态运行状态阻塞状态死亡状态 补充:线程阻塞的原因 线程调用sleep()方法进入睡眠状态 线程得到一个…...

第一节:电路连接【51单片机+A4988+步进电机教程】
摘要:本节介绍如何搭建一个51单片机A4988步进电机控制电路,所用材料均为常见的模块,简单高效的方式搭建起硬件环境 一、硬件清单 ①51单片机最小控制模块 ②开关电源 ③A4988模块转接座 ④二相四线步进电机 ⑤电线若干 二、接线 三、A49…...
机器学习算法深度解析:以支持向量机(SVM)为例的实践应用
机器学习算法深度解析:以支持向量机(SVM)为例的实践应用 在当今的数据驱动时代,机器学习作为人工智能的核心分支,正以前所未有的速度改变着我们的生活与工作方式。从图像识别到自然语言处理,从金融预测到医…...

解决Postman一直在转圈加载无法打开问题的方法
在使用Postman这款强大的API测试工具时,有时可能会遇到程序长时间加载而无法正常使用的情况。面对这样的问题,可以尝试以下几种解决办法: 方法一:直接运行Postman可执行文件 定位到Postman的安装目录 如果您不确定Postman的具体安…...
利用 LangChain 构建对话式 AI 应用
随着人工智能技术的快速发展,对话式 AI 已成为现代应用的核心部分。在构建智能客服、虚拟助手以及交互式学习平台时,一个强大且灵活的框架显得尤为重要。本文将深度解析 LangChain 这一框架的功能及实际使用,帮助开发者快速上手。 什么是 La…...
力扣--34.在排序数组中查找元素的第一个和最后一个位置
题目 给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。 如果数组中不存在目标值 target,返回 [-1, -1]。 你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。 示例 1&…...

【Java回顾】Day2 正则表达式----异常处理
参考资料:菜鸟教程 https://www.runoob.com/java/java-exceptions.html 正则表达式 有一部分没看完 介绍 字符串的模式搜索、编辑或处理文本java.util.regex包,包含了pattern和mathcer类,用于处理正则表达式的匹配操作。 捕获组 把多个字符…...

【SpringBoot】当 @PathVariable 遇到 /,如何处理
1. 问题复现 在解析一个 URL 时,我们经常会使用 PathVariable 这个注解。例如我们会经常见到如下风格的代码: RestController Slf4j public class HelloWorldController {RequestMapping(path "/hi1/{name}", method RequestMethod.GET)publ…...

【FlutterDart】页面切换 PageView PageController(9 /100)
上效果: 有些不能理解官方例子里的动画为什么没有效果,有可能是我写法不对 后续如果有动画效果修复了,再更新这篇,没有动画效果,总觉得感受的丝滑效果差了很多 上代码: import package:flutter/material.…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...

vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...

376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...