【计算机视觉】单目深度估计模型-Depth Anything-V2
概述
本篇将简单介绍Depth Anything V2
单目深度估计模型,该模型旨在解决现有的深度估计模型在处理复杂场景、透明或反射物体时的性能限制。与前一代模型相比,V2版本通过采用合成图像训练、增加教师模型容量,并利用大规模伪标签现实数据进行学生模型教学,显著提高了预测精度和效率。
项目地址:Depth Anything V2 论文地址:https://arxiv.org/abs/2406.09414 代码地址:https://github.com/DepthAnything/Depth-Anything-V2/tree/main
一、模型改进
将所有标记的真实图像替换为合成图像。
在Depth Anything V2的研究中,研究团队提出了一种创新的方法,即使用完全合成的图像来替代所有带有标签的真实图像,以训练单目深度估计模型。这一决策背后的原因有几个关键点:
- 标签精度:研究发现,真实图像中的标签存在粗略的情况,这会导致模型学习到错误的深度信息。特别是在处理细粒度的深度预测时,真实标签的粗糙性会对最终的预测结果造成负面影响。
- 领域转移问题:虽然合成图像可以提供高质量的深度标签,但它们与真实世界的图像之间存在分布上的差异。为了解决这一问题,研究团队采取了两方面的策略:一是通过增加合成数据的规模来提高其多样性;二是引入了大规模未标记的真实图像,并利用强大的教师模型为这些图像生成伪标签,以作为学生模型训练的数据来源。
通过完全使用合成图像来训练教师模型,并借助教师模型生成的伪标签来训练学生模型,研究团队成功地提高了单目深度估计模型的性能,尤其是在处理细粒度深度信息方面取得了显著进步。这种方法不仅克服了传统使用真实标记图像所带来的问题,也为未来的研究提供了一条可行的路径
扩大教师模型的容量。
通过训练更大规模的模型来捕捉更丰富的特征表示,进而提高模型的学习能力。论文中采取了以下做法:
- 教师模型的选择:选择DINOv2-G作为教师模型。DINOv2-G是一个强大的模型,其本身已经在大规模图像上进行了预训练,具备很强的特征提取能力。
- 利用合成数据训练:使用了五个高精度的合成数据集(共包含595K张图像)来训练这个教师模型。而上一节中用到的合成数据,其好处是可以获得非常精确的深度标签,有助于教师模型学习到高质量的特征表示。
- 伪标签生成:经过训练后的强大教师模型能够在未标注的真实图像上生成高质量的伪标签。这些伪标签随后被用来训练学生模型,帮助学生模型学习到更接近真实世界的深度预测。
扩大教师模型容量的目的就是为了使其能够更好地捕捉到输入图像中的细微特征,并且这些特征可以通过知识蒸馏的方式传递给学生模型,从而帮助学生模型在较小的规模下也能保持较高的预测精度。
通过大规模伪标记真实图像的桥梁来教授学生模型
利用上述利用生成的伪标签,团队训练了四个不同规模的学生模型(small, base, large, giant)。学生模型通过模仿教师模型的行为,学习到了如何在真实图像上做出准确的深度预测。这种方法的主要优点是:
- 增强场景覆盖范围:通过引入大量的未标注真实图像,可以覆盖更多的实际场景,从而增强模型的零样本深度估计能力。
- 知识转移:通过伪标签,学生模型可以从教师模型那里“继承”到高质量的预测能力,类似于知识蒸馏,但不是在特征层面,而是在标签层面。
- 安全性:这种方法在标签层面进行知识转移,比在特征或logit级别进行蒸馏更为安全可靠,特别是在教师与学生模型规模差距较大的情况下。
二、使用体验
我们可以在huggingface中在线体验该模型的强大,网址如下:https://huggingface.co/spaces/depth-anything/Depth-Anything-V2
我们可以上传自己的照片,或者点击下方的示例图片,滑动右边箭头可以对比原图与深度图
三、代码示例
1、准备工作
首先克隆项目到本地并且安装项目所需的所有 Python 依赖项
git clone https://github.com/DepthAnything/Depth-Anything-V2
cd Depth-Anything-V2
pip install -r requirements.txt
2、模型选择
根据需求,以及硬件选择合适的模型大小,下载下来并且放在checkpoints
文件夹下
链接如下(giant尚未发布):
Depth-Anything-V2-Small
Depth-Anything-V2-Base
Depth-Anything-V2-Large
3、简单示例代码
首先导入相关库
import cv2
import torchfrom depth_anything_v2.dpt import DepthAnythingV2DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
这里定义了不同的模型配置,您可以根据需要选择不同的配置。
model_configs = {'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}encoder = 'vitl' # or 'vits', 'vitb', 'vitg'
创建了一个 DepthAnythingV2 实例,加载了预训练的权重,并将模型移到了之前确定的设备上,并设置为评估模式...
点击【计算机视觉】单目深度估计模型-Depth Anything-V2查看全文。
相关文章:

【计算机视觉】单目深度估计模型-Depth Anything-V2
概述 本篇将简单介绍Depth Anything V2单目深度估计模型,该模型旨在解决现有的深度估计模型在处理复杂场景、透明或反射物体时的性能限制。与前一代模型相比,V2版本通过采用合成图像训练、增加教师模型容量,并利用大规模伪标签现实数据进行学…...
Servlet 和 Spring MVC:区别与联系
前言 在 Java Web 开发中,Servlet 和 Spring MVC 是两个重要的技术。Servlet 是 Java Web 的基础组件,而 Spring MVC 是一个高级 Web 框架,建立在 Servlet 的基础之上,提供了强大的功能和易用性。这篇文章将从定义、原理、功能对…...

【期末复习】三、内存管理
1.物理内存管理 空闲内存管理方式主要分为:等长划分和不等长划分。 内存管理方式 单一连续分区 基本思想:一段时间内只有一个进程在内存。 特点:简单,内存利用率低, 有三种不同的布局: 固定分区 把内存空间分割成若干区域, 称为分区。 每个分区的大小可以相同也可…...

Microsoft Azure Cosmos DB:全球分布式、多模型数据库服务
目录 前言1. Azure Cosmos DB 简介1.1 什么是 Azure Cosmos DB?1.2 核心技术特点 2. 数据模型与 API 支持2.1 文档存储(Document Store)2.2 图数据库(Graph DBMS)2.3 键值存储(Key-Value Store)…...

【Docker】安装registry本地镜像库,开启Https功能
下载镜像 docker pull registry:2 需要启动https功能,就要生成服务端的自签名的证书和私钥,以及在docker客户端安装这个经过签名的证书。 第一步:生成公私钥信息,第二步,制作证书签名申请文件, 第三步&…...

JUC--线程池
线程池 七、线程池7.1线程池的概述7.2线程池的构建与参数ThreadPoolExecutor 的构造方法核心参数线程池的工作原理 Executors构造方法newFixedThreadPoolnewCachedThreadPoolnewSingleThreadExecutornewScheduledThreadPool(int corePoolSize) 为什么不推荐使用内置线程池&…...
后端Java开发:第十一天
第十一天:方法重载 - 理解与应用 今天我们继续深入 Java 的世界,讨论 Java 中的 方法重载(Method Overloading)。你可能会想,什么是方法重载?简单来说,方法重载允许你在一个类中定义多个同名方…...

基于 GEE 的长时间序列 Landsat 5 影像下载
目录 1 完整代码 2 运行结果 1 完整代码 var LT5 ee.ImageCollection("LANDSAT/LT05/C01/T1"),imageVisParam {"opacity":1,"bands":["B4","B3","B2"],"gamma":1},roi ee.FeatureCollection(&quo…...

Unity-Mirror网络框架从入门到精通之Attributes属性介绍
前言 在现代游戏开发中,网络功能日益成为提升游戏体验的关键组成部分。Mirror是一个用于Unity的开源网络框架,专为多人游戏开发设计。它使得开发者能够轻松实现网络连接、数据同步和游戏状态管理。本文将深入介绍Mirror的基本概念、如何与其他网络框架进…...

软考证书邮寄步骤
一、点击网址 https://www.ruankao.org.cn/ 复制上述网址,粘贴至浏览器中。点击 “报名入口” 。 二、点击入口 选择考试批次。点击你所在考试地点的入口并进入。 三、登录 输入手机号和密码。进行验证。 四、点击基本信息 点击右上角。进入 “基本信息” 。 五、…...

计算机网络 (29)网络地址转换NAT
前言 网络地址转换(Network Address Translation,NAT)是计算机网络中的一种重要协议,它主要用于将私有IP地址转换为公共IP地址,以实现内部网络与外部网络之间的通信。 一、基本概念 NAT是一种在局域网(LAN&…...

nlp培训重点-2
1. 贝叶斯公式 import math import jieba import re import os import json from collections import defaultdictjieba.initialize()""" 贝叶斯分类实践P(A|B) (P(A) * P(B|A)) / P(B) 事件A:文本属于类别x1。文本属于类别x的概率,记做…...

设计模式(1)——面向对象和面向过程,封装、继承和多态
文章目录 一、day11. 什么是面向对象2. 面向对象的三要素:继承、封装和多态2.1 封装**2.1.1 封装的概念****2.1.2 如何实现封装****2.1.3 封装的底层实现**2.1.4 为什么使用封装?(好处)**2.1.5 封装只有类能做吗?结构体…...
培训机构Day24
今天讲了一些javaee比较过时的技术,虽然已经过时,该学的还得学学。 知识点: http://localhost:8080/demo01/demo1?a1&b2&c3 pattern: /demo1 上下文路径:ContextPath,/demo01,不包含请求参数。 …...

1/7 C++
练习:要求在堆区连续申请5个int的大小空间用于存储5名学生的成绩,分别完成空间的申请、成绩的录入、升序排序、成绩输出函数,并在主程序中完成测试 要求使用new #include <iostream>using namespace std; double *addr_new() {double …...

C语言初阶习题【23】输出数组的前5项之和
1. 题目描述 求Snaaaaaaaaaaaaaaa的前5项之和,其中a是一个数字, 例如:222222222222222 2.思路 分析下,222222222222222,怎么把它每一项算出来 2 210222 22102222 2221022222 我们的多项式就是a a*102,…...

Android audio(1)-音频模块概述
Audio模块是Android系统的重要组成部分,在 Android 中负责音频路由,数据处理,音频控制,音频设备管理/切换。 下面的内容大多翻译自android官网,读者可跳过阅读后面的博客。 一、系统架构 下图说明了音频模块的组成,并指出各组成部分所涉及的相关源代码。所谓架构就是说模…...

园林与消防工程:选择正确工程项目管理软件的重要性
在园林与消防工程领域,选择正确的工程项目管理软件对于提高项目效率、优化资源配置以及确保项目质量至关重要。以下是对园林与消防工程中选择正确工程项目管理软件重要性的详细分析: 1.提升项目管理效率 实时监控与跟踪:工程项目管理软件能够…...
分布式环境下定时任务扫描时间段模板创建可预订时间段
🎯 本文详细介绍了场馆预定系统中时间段生成的实现方案。通过设计场馆表、时间段模板表和时间段表,系统能够根据场馆的提前预定天数生成未来可预定的时间段。为了确保任务执行的唯一性和高效性,系统采用分布式锁机制和定时任务,避…...

SQL刷题笔记——高级条件语句
目录 1题目:SQL149 根据指定记录是否存在输出不同情况 2 作答解析 3 知识点 3.1 count函数 3.2 内连接与左连接 1题目:SQL149 根据指定记录是否存在输出不同情况 2 作答解析 #正确答案 select uid, incomplete_cnt, incomplete_rate from (select …...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...

OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...

【C++进阶篇】智能指针
C内存管理终极指南:智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...