当前位置: 首页 > news >正文

探索式测试

探索式测试是一种软件测试风格,它强调独立测试人员的个人自由和职责,为了持续优化其工作的价值,将测试学习、测试设计、测试执行和测试结果分析作为相互支持的活动,在整个项目实现过程中并行地执行。

选择合适的探索式测试方法我们可以按照如下步骤来选择探索式测试方法。第一步:对被测对象进行分区。可将被测对象(系统、特性或功能)分到历史区(继承特性)​、商业区(销售特性)​、娱乐区(辅助特性)​、破旧区(问题高发区)和旅游区(噱头特性)​。实际操作的时候会发现,被测对象的特性可能同时存在于多个区,即被测对象区域存在互相重叠的情况,这就需要针对一个特性,使用多种探索式测试方法。

 第二步:根据不同的分区来选择适合的探索式测试方法。每个区域都有一些适合该区域特点的探索式测试方法。

1.历史区测试方法历史区测试法针对的是老代码,既包括前几个版本就已经存在的特性,又包括那些用于修复已知缺陷的代码特性。历史区测试法可以高效实现回归测试。适合历史区的一些探索式测试方法。

2.商业区测试法商业区测试法是针对产品的重要特性进行的探索式测试

3.娱乐区测试法娱乐区测试法针对的是那些并不是那么重要的特性进行的探索式测试,

4.破旧区测试法破旧区测试法针对的是问题比较多的特性。破旧区测试法是一种非常有效的测试方法,因为缺陷容易聚集,某一模块出现缺陷,其他模块出现类似缺陷(有可能出自一个开发人员之手)的概率很大,多花一些时间测试那些缺陷较多的代码往往更能高效地发现缺陷。破旧区测试法的核心思想就是“落井下石”​,即通过恶意数据、修改配置文件等各种破坏性的操作进行测试

 5.旅游区测试法旅游区测试法针对的是噱头特性。这种测试方法关注如何快速访问系统的各种功能,就像方法的名称一样,只是为了“到此一游

开展探索式测试的步骤

 来源《测试架构师修炼之道》

相关文章:

探索式测试

探索式测试是一种软件测试风格,它强调独立测试人员的个人自由和职责,为了持续优化其工作的价值,将测试学习、测试设计、测试执行和测试结果分析作为相互支持的活动,在整个项目实现过程中并行地执行。 选择合适的探索式测试方法我…...

服务器数据恢复—raid5故障导致上层ORACLE无法启动的数据恢复案例

服务器数据恢复环境&故障: 一台服务器上的8块硬盘组建了一组raid5磁盘阵列。上层安装windows server操作系统,部署了oracle数据库。 raid5阵列中有2块硬盘的硬盘指示灯显示异常报警。服务器操作系统无法启动,ORACLE数据库也无法启动。 服…...

ISP各模块功能介绍

--------声明,本文为转载整理------- ISP各个模块功能介绍: 各模块前后效果对比: 黑电平补偿(BLC) 在理想情况下,没有光照射的像素点其响应值应为0。但是,由于杂质、受热等其它原因的影响&…...

Python 数据建模完整流程指南

在数据科学和机器学习中,建模是一个至关重要的过程。通过有效的数据建模,我们能够从原始数据中提取有用的洞察,并为预测或分类任务提供支持。在本篇博客中,我们将通过 Python 展示数据建模的完整流程,包括数据准备、建…...

深入学习RocketMQ

参考&#xff1a;RocketMQ从从入门到精通_rocketmq入门到精通-CSDN博客 1、消息的类型 普通消息 顺序消息 延时消息 批量消息 事务消息 2、在java中使用 2.1、pom.xml中加入依赖 <dependency><groupId>org.apache.rocketmq</groupId><artifactId…...

国产编辑器EverEdit - 扩展脚本:关闭所有未修改文档

1 扩展脚本&#xff1a;关闭所有未修改文档 1.1 应用场景 当用户打开过多文档时&#xff0c;部分文档已经修改&#xff0c;而大部分没有修改&#xff0c;为了减少在众多已打开文档中来回跳转的不便&#xff0c;可以将没有修改的文档全部关闭&#xff0c;但目前提供的快速关闭窗…...

数据结构二叉树-C语言

数据结构二叉树-C语言 1.树1.1树的概念与结构1.2树的相关术语1.3树的表示1.4树形结构实际运用场景 2.二叉树2.1概念与结构2.2特殊的二叉树2.2.1满二叉树2.2.2完全二叉树 2.3二叉树存储结构2.3.1顺序结构2.3.2链式结构 3.实现顺序结构的二叉树4.实现链式结构二叉树4.1前中后序遍…...

Python基于YOLOv8和OpenCV实现车道线和车辆检测

使用YOLOv8&#xff08;You Only Look Once&#xff09;和OpenCV实现车道线和车辆检测&#xff0c;目标是创建一个可以检测道路上的车道并识别车辆的系统&#xff0c;并估计它们与摄像头的距离。该项目结合了计算机视觉技术和深度学习物体检测。 1、系统主要功能 车道检测&am…...

代码随想录算法训练营第六十天|KM94.城市间货物运输Ⅰ|KM95.城市间货物运输Ⅱ|KM96.城市间货物运输Ⅲ

94. 城市间货物运输 I 2、Bellman_ford队列优化算法&#xff08;又名SPFA&#xff09; SPFA是对Bellman_ford算法的优化&#xff0c;由于Bellman_ford 算法 每次都是对所有边进行松弛&#xff0c;其实是多做了一些无用功。其实只需要对 上一次松弛的时候更新过的节点作为出发节…...

人工智能学习路线全链路解析

一、基础准备阶段&#xff08;预计 2-3 个月&#xff09; &#xff08;一&#xff09;数学知识巩固与深化 线性代数&#xff08;约 1 个月&#xff09;&#xff1a; 矩阵基础&#xff1a;回顾矩阵的定义、表示方法、矩阵的基本运算&#xff08;加法、减法、乘法&#xff09;&…...

C++语言的学习路线

C语言的学习路线 C是一种强大的高级编程语言&#xff0c;广泛应用于系统软件、游戏开发、嵌入式系统和高性能应用等多个领域。由于其丰富的功能和灵活性&#xff0c;C是一门值得深入学习的语言。本文旨在为初学者制定一条系统的学习路线&#xff0c;帮助他们循序渐进地掌握C语…...

用于与多个数据库聊天的智能 SQL 代理问答和 RAG 系统(3) —— 基于 LangChain 框架的文档检索与问答功能以及RAG Tool的使用

介绍基于 LangChain 框架的文档检索与问答功能&#xff0c;目标是通过查询存储的向量数据库&#xff08;VectorDB&#xff09;&#xff0c;为用户的问题检索相关内容&#xff0c;并生成自然语言的答案。以下是代码逻辑的详细解析&#xff1a; 代码结构与功能 初始化环境与加载…...

20250110doker学习记录

1.本机创建tts环境。用conda. 0.1安装。我都用的默认&#xff0c;你也可以。我安装过一次&#xff0c;如果修复&#xff0c;后面加 -u bash Anaconda3-2024.10-1-Linux-x86_64.sh等待一会。 (base) ktkt4028:~/Downloads$ conda -V conda 24.9.2学习资源 Conda 常用命令大…...

MPU6050: 卡尔曼滤波, 低通滤波

对于MPU6050(一种集成了三轴加速度计和三轴陀螺仪的惯性测量单元),对加速度值进行卡尔曼滤波,而对角速度进行低通滤波的选择是基于这两种传感器数据的不同特性和应用需求。以下是详细解释: 加速度值与卡尔曼滤波 为什么使用卡尔曼滤波? 噪声抑制: 加速度计信号通常包含…...

C++的标准和C++的编译版本

C的标准和C的编译版本&#xff1a;原理和概念 理解 C标准 和 C编译版本 的关系是学习 C 的一个重要部分。这两者虽然看似相关&#xff0c;但实际上分别涉及了不同的概念和技术。下面将通过层次清晰的解释&#xff0c;帮助新手理解这两个概念的差异、特点及其相互关系。 一、C标…...

python学习笔记—17—数据容器之字符串

1. 字符串 (1) 字符串能通过下标索引来获取其中的元素 (2) 旧字符串无法修改特定下标的元素 (3) index——查找字符串中任意元素在整个字符串中的起始位置(单个字符或字符串都可以) tmp_str "supercarrydoinb" tmp_position1 tmp_str.index("s") tmp_p…...

UE5 使用内置组件进行网格切割

UE引擎非常强大&#xff0c;直接内置了网格切割功能并封装为蓝图节点&#xff0c;这项功能在UE4中就存在&#xff0c;并且无需使用Chaos等模块。那么就来学习下如何使用内置组件实现网格切割。 1.配置测试用StaticMesh 对于被切割的模型&#xff0c;需要配置一些参数。以UE5…...

51单片机——串口通信(重点)

1、通信 通信的方式可以分为多种&#xff0c;按照数据传送方式可分为串行通信和并行通信&#xff1b; 按照通信的数据同步方式&#xff0c;可分为异步通信和同步通信&#xff1b; 按照数据的传输方向又可分为单工、半双工和全双工通信 1.1 通信速率 衡量通信性能的一个非常…...

Taro+Vue实现图片裁剪组件

cropper-image-taro-vue3 组件库 介绍 cropper-image-taro-vue3 是一个基于 Vue 3 和 Taro 开发的裁剪工具组件&#xff0c;支持图片裁剪、裁剪框拖动、缩放和输出裁剪后的图片。该组件适用于 Vue 3 和 Taro 环境&#xff0c;可以在网页、小程序等平台中使用。 源码 https:…...

PHP民宿酒店预订系统小程序源码

&#x1f3e1;民宿酒店预订系统 基于ThinkPHPuniappuView框架精心构建的多门店民宿酒店预订管理系统&#xff0c;能够迅速为您搭建起专属的、功能全面且操作便捷的民宿酒店预订小程序。 该系统不仅涵盖了预订、退房、WIFI连接、用户反馈、周边信息展示等核心功能&#xff0c;更…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上&#xff0c;对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...