分组通道自注意力G-CSA详解及代码复现
G-CSA定义
G-CSA (Grouped Channel Self-Attention) 是一种创新性的视觉注意力机制,巧妙地结合了卷积和自注意力的优势。通过将输入特征图划分为多个独立的通道组,在每个组内执行自注意力操作,G-CSA实现了高效的全局信息交互,同时保留了局部特征细节。这种方法不仅提高了模型的表达能力,还显著降低了计算复杂度,使其成为计算机视觉任务中的一种高效解决方案。
设计动机
G-CSA的设计动机源于解决传统注意力机制面临的挑战,特别是在处理大规模图像数据时的计算效率问题。传统的自注意力机制虽然能有效捕捉全局上下文信息,但其计算复杂度随特征图大小呈平方增长,限制了其在实际应用中的可行性。
为克服这一局限性,研究人员提出了分组通道自注意力(Grouped Channel Self-Attention, G-CSA)机制。G-CSA的核心思想是在保持自注意力强大表达能力的同时,通过巧妙的分组策略显著降低计算复杂度。这种设计不仅提高了模型的计算效率,还使得自注意力机制能在更大规模的数据集上得到有效应用。
G-CSA的设计灵感来源于以下几个关键概念:
-
分组机制 :受ShuffleNet v2的启发,G-CSA将输入特征图沿通道维度划分为多个独立的组。这种分组策略允许并行处理不同组的特征,大
相关文章:
分组通道自注意力G-CSA详解及代码复现
G-CSA定义 G-CSA (Grouped Channel Self-Attention) 是一种创新性的视觉注意力机制,巧妙地结合了卷积和自注意力的优势。通过将输入特征图划分为多个独立的通道组,在每个组内执行自注意力操作,G-CSA实现了高效的全局信息交互,同时保留了局部特征细节。这种方法不仅提高了模…...
汽车基础软件AutoSAR自学攻略(四)-AutoSAR CP分层架构(3) (万字长文-配21张彩图)
汽车基础软件AutoSAR自学攻略(四)-AutoSAR CP分层架构(3) (万字长文-配21张彩图) 前面的两篇博文简述了AutoSAR CP分层架构的概念,下面我们来具体到每一层的具体内容进行讲解,每一层的每一个功能块力求用一个总览图,外加一个例子的图给大家进…...
玩转大语言模型——langchain调用ollama视觉多模态语言模型
系列文章目录 玩转大语言模型——ollama导入huggingface下载的模型 玩转大语言模型——langchain调用ollama视觉多模态语言模型 langchain调用ollama视觉多模态语言模型 系列文章目录前言使用Ollama下载模型查找模型下载模型 测试模型ollama测试langchain测试加载图片加载模型…...
Github 2025-01-11 Rust开源项目日报 Top10
根据Github Trendings的统计,今日(2025-01-11统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Rust项目10C项目1Swift项目1Yazi - 快速终端文件管理器 创建周期:210 天开发语言:Rust协议类型:MIT LicenseStar数量:5668 个Fork数量:122…...
【学习】【记录】【分享】微型响应系统
前言 本篇博客源于对Vue和React框架中响应式系统的好奇与探索。若文中存在任何错误或有更优的解决方案,欢迎各位读者不吝指正,让我们一起学习,共同进步。 1. 什么是响应式系统 响应式系统是一种编程范式,它允许数据的变化自动地…...
vue城市道路交通流量预测可视化系统
文章结尾部分有CSDN官方提供的学长 联系方式名片 文章结尾部分有CSDN官方提供的学长 联系方式名片 关注B站、收藏、不迷路! 项目亮点 编号:R09 🚇 网站大屏管理三大前端、vuespringbootmysql、前后端分离架构 🚇 流量预测道路查询…...
Windows7 Emacs设置及中文乱码解决
个人博客地址:Windows7 Emacs设置及中文乱码解决 | 一张假钞的真实世界 环境说明 Windows7GNU Emacs 25.1.1安装路径:D:/apps/emacs/ 配置Emacs 在Windows7下安装完Emacs后,默认情况下Emacs不会在一启动的时候就生成.emacs配置文件和.ema…...
Python AI教程之十五:监督学习之决策树(6)高级算法C5.0决策树算法介绍
C5.0决策树算法 C5 算法由 J. Ross Quinlan 创建,是 ID3 决策树方法的扩展。它通过根据信息增益(衡量通过按特定属性进行划分而实现的熵减少量)递归地划分数据来构建决策树。 对于分类问题,C5.0 方法是一种决策树算法。它构建规则集或决策树,这是对 C4.5 方法的改进。根…...
MOS管为什么会有夹断,夹断后为什么会有电流?该电流为什么是恒定的?
以下是对MOS管MOS管为什么会有夹断,夹断后为什么还会有电流?该电流为什么是恒定的?的一些心得体会。 1. MOS管为什么会有夹断? 可以认为D极加压使得D极的耗尽层增大(原因是N极接正极,P极接负极,电子被吸引…...
网络安全-RSA非对称加密算法、数字签名
数字签名非常普遍: 了解数字签名前先了解一下SHA-1摘要,RSA非对称加密算法。然后再了解数字签名。 SHA-1 SHA-1(secure hash Algorithm )是一种 数据加密算法。该算法的思想是接收一段明文,然后以一种不可逆的方式将…...
【AI日记】25.01.13
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】【读书与思考】 AI kaggle 比赛:Forecasting Sticker Sales 读书 书名:罗素论幸福 律己 AI: 8 小时,良作息:1:00-9:00, 良短视频&…...
Mysql--运维篇--空间管理(表空间,索引空间,临时表空间,二进制日志,数据归档等)
MySQL的空间管理是指对数据库存储资源的管理和优化。确保数据库能够高效地使用磁盘空间、内存和其他系统资源。良好的空间管理不仅有助于提高数据库的性能,还能减少存储成本并防止因磁盘空间不足导致的服务中断。MySQL的空间管理涉及多个方面,包括表空间…...
JVM面试相关
JVM组成 什么是程序计数器 详细介绍Java堆 什么是虚拟机栈 能不能解释一下方法区? 直接内存相关 类加载器 什么是类加载器,类加载器有哪些 什么是双亲委派模型 类加载过程 垃圾回收 对象什么时候可以被垃圾回收器回收 JVM垃圾回收算法有那些 JVM的分代…...
【leetcode 13】哈希表 242.有效的字母异位词
原题链接 题解链接 一般哈希表都是用来快速判断一个元素是否出现集合里。 当我们想使用哈希法来解决问题的时候,我们一般会选择如下三种数据结构。 数组 set (集合) map(映射) 如果在做面试题目的时候遇到需要判断一个元素是否出现过的场景…...
Blazor开发复杂信息管理系统的优势
随着现代企业信息管理需求的不断提升,开发高效、易维护、可扩展的系统变得尤为重要。在这个过程中,Blazor作为一种新兴的Web开发框架,因其独特的优势,逐渐成为开发复杂信息管理系统的首选技术之一。本文将结合Blazor在开发复杂信息…...
ue5 1.平A,两段连击蒙太奇。鼠标点一下,就放2段动画。2,动画混合即融合,边跑边挥剑,3,动画通知,动画到某一帧,把控制权交给蓝图。就执行蓝图节点
新建文件夹 创建一个蒙太奇MA_Melee 找到c_slow 调节一下速度 把D_slow拖上去 中间加一个片段 哎呀呀,写错了,我想写2 把这个标记拖过来,点击默认default 弄第二个片段 就会自己变成这个样子 把2这个标记拖到中间 鼠标左键&a…...
2025,AI走向何方?暴雨技术专家为您展望
过去一年中,人工智能技术飞速发展,在各行各业都收获了巨大进展。面对即将到来的2025年,暴雨技术研发团队的专家对AI领域的发展趋势进行了展望,让我们来看看未来一年,有哪些重要趋势值得关注。 迈向关键转折的一步 20…...
Threejs实现 区块链网络效应
大家好!我是 [数擎 AI],一位热爱探索新技术的前端开发者,在这里分享前端和 Web3D、AI 技术的干货与实战经验。如果你对技术有热情,欢迎关注我的文章,我们一起成长、进步! 开发领域:前端开发 | A…...
宁德时代C++后端开发面试题及参考答案
请阐述面向对象的三大特性。 面向对象编程有三大特性,分别是封装、继承和多态。 封装是指将数据和操作数据的方法绑定在一起,对数据的访问和操作进行限制。这样做的好处是可以隐藏对象的内部细节,只暴露必要的接口给外部。例如,我们可以把一个汽车类的内部引擎状态、速度等…...
【三维数域】三维数据调度-负载均衡和资源优化
在处理大规模三维数据时,负载均衡和资源优化是确保系统高效运行、提供流畅用户体验的关键。这两者不仅影响到系统的性能和稳定性,还直接决定了用户交互的质量。以下是关于如何在三维数据调度中实现有效的负载均衡和资源优化的详细探讨。 一、负载均衡 负…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?
uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...
【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...
抽象类和接口(全)
一、抽象类 1.概念:如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象,这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法,包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中,⼀个类如果被 abs…...
