当前位置: 首页 > news >正文

Excel数据叠加生成新DataFrame:操作指南与案例

目录

一、准备工作

二、读取Excel文件

三、数据叠加

四、处理重复数据(可选)

五、保存新DataFrame到Excel文件

六、案例演示

七、注意事项

八、总结


在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步的分析和处理。本文将介绍如何使用Python中的Pandas库,将多个Excel文档中的数据叠加形成新的DataFrame,并提供详细的操作指南和案例,帮助读者轻松掌握这一技能。

一、准备工作

在开始之前,我们需要确保已经安装了Pandas库。如果尚未安装,可以使用以下命令进行安装:

pip install pandas

此外,我们还需要准备一些Excel文档作为示例数据。假设我们有两个Excel文件:data1.xlsx和data2.xlsx,它们具有相同的列结构,但包含不同的数据。

二、读取Excel文件

首先,我们需要使用Pandas读取Excel文件中的数据。Pandas提供了read

相关文章:

Excel数据叠加生成新DataFrame:操作指南与案例

目录 一、准备工作 二、读取Excel文件 三、数据叠加 四、处理重复数据(可选) 五、保存新DataFrame到Excel文件 六、案例演示 七、注意事项 八、总结 在日常数据处理工作中,我们经常需要将不同Excel文档中的数据整合到一个新的DataFrame中,以便进行进一步的分析和处…...

Web 开发入门之旅:从静态页面到全栈应用的第一步

Web 开发入门之旅:从静态页面到全栈应用的第一步 在当今互联网飞速发展的时代,掌握 Web 开发技能已成为众多技术爱好者和职场人士的必修课。然而,对于初学者而言,面对繁杂的技术栈和庞大的学习资源,往往感到无从下手。…...

WebSocket实现分布式的不同方案对比

引言 随着实时通信需求的日益增长,WebSocket作为一种基于TCP的全双工通信协议,在实时聊天、在线游戏、数据推送等场景中得到了广泛应用。然而,在分布式环境下,如何实现WebSocket的连接管理和消息推送成为了一个挑战。本文将对比几…...

基于注意力机制的端到端合成语音检测

End-to-end Synthetic Speech Detection Based on Attention Mechanism 摘要: 五种轻量级注意力模块改为适用于语音序列的 通道注意力机制和 一维空间注意力机制 ASVspoof2019测试集的 等错误率和 最小串联检测代价函数都有所降低 池化层之前嵌入CBAM、ECA的模型测试…...

MySQL NaviCat 安装及配置教程(Windows)【安装】

文章目录 一、 MySQL 下载 1. 官网下载2. 其它渠道 二、 MySQL 安装三、 MySQL 验证及配置四、 NaviCat 下载 1. 官网下载2. 其它渠道 五、 NaviCat 安装六、 NaviCat 逆向工程 软件 / 环境安装及配置目录 一、 MySQL 下载 1. 官网下载 安装地址:https://www.m…...

微信小程序:播放音频

在小程序开发中,音频播放是一个重要的功能。本文将详细介绍小程序音频播放的相关知识点,帮助开发者更好地掌握小程序音频播放的实现方法。 一、小程序音频播放的基本流程 在小程序中,音频播放的基本流程如下: 获取音频数据&#…...

Ubuntu安装K8S

第一步: 安装docker Install Docker #注意docker是早期的名称已经过时了,因此请使用如下命令,一步到位安装docker-ce。 第二步:设置K8S源: (大陆使用aliyun源,大陆外使用google源)…...

独立同分布时,联合概率密度函数等于边缘概率密度函数乘积

在概率论中,独立同分布(i.i.d.)指的是多个随机变量既独立又服从相同的概率分布。对于一组随机变量 (X_1, X_2, \dots, X_n),若它们是独立同分布的,那么它们的联合概率密度函数 (p(x_1, x_2, \dots, x_n)) 就可以表示为…...

半导体数据分析: 玩转WM-811K Wafermap 数据集(三) AI 机器学习

前面我们已经通过两篇文章,一起熟悉了WM-811K Wafermap 数据集,并对其中的一些数据进行了调用,生成了一些统计信息和图片。今天我们接着继续往前走。 半导体数据分析: 玩转WM-811K Wafermap 数据集(二) AI…...

【.net core】【sqlsugar】时间查询示例

1、时间包含查询示例 //model.TimeInterval为时间区间参数,参数格式为2024-01-01~2025-01-01 //query为当前查询的语句内容 //为当前查询语句增加创建时间模糊搜索查询条件 query query.Where(a > ((DateTime)a.F_CreatorTime).ToString("yyyy-MM-dd HH:m…...

Kotlin 协程基础十 —— 协作、互斥锁与共享变量

Kotlin 协程基础系列: Kotlin 协程基础一 —— 总体知识概述 Kotlin 协程基础二 —— 结构化并发(一) Kotlin 协程基础三 —— 结构化并发(二) Kotlin 协程基础四 —— CoroutineScope 与 CoroutineContext Kotlin 协程…...

Java中网络编程的学习

目录 网络编程概述 网络模型 网络通信三要素: IP 端口号 通信协议 IP地址(Internet Protocol Address) 端口号 网络通信协议 TCP 三次握手 四次挥手 UDP TCP编程 客户端Socket的工作过程包含以下四个基本的步骤: 服务器程序…...

[计算机网络]一. 计算机网络概论第一部分

作者申明&#xff1a;作者所有文章借助了各个渠道的图片视频以及资料&#xff0c;在此致谢。作者所有文章不用于盈利&#xff0c;只是用于个人学习。 1.0推荐动画 【网络】半小时看懂<计算机网络>_哔哩哔哩_bilibili 1.1计算机网络在信息时代的作用 在当今信息时代&…...

【0393】Postgres内核 checkpointer process ③ 构建 WAL records 工作缓存区

1. 初始化 ThisTimeLineID、RedoRecPtr 函数 InitXLOGAccess() 内部会初始化 ThisTimeLineID、wal_segment_size、doPageWrites 和 RedoRecPtr 等全局变量。 下面是这四个变量初始化前的值: (gdb) p ThisTimeLineID $125 = 0 (gdb) p wal_segment_size $126 = 16777216 (gdb…...

正则表达式基础知识及grep、sed、awk常用命令

文章目录 前言一、正则表达式元字符和特性1. 字符匹配2. 量词3. 字符类4. 边界匹配5. 分词和捕获6. 特殊字符7. 位置锚定 二、grep常用参数1. -n额外输出行号2. -v 排除匹配的行3. -E 支持扩展正则匹配4. -e进行多规则匹配搜索5. -R 递归匹配目录中的文件内容6. -r递归地搜索目…...

redhat安装docker 24.0.7

1、下载docker镜像包 wget https://download.docker.com/linux/static/stable/x86_64/docker-24.0.7.tgz 2、解压 tar -xvf docker-24.0.7.tgz 3、解压的docker文件夹全部移动至/usr/bin目录 cd docker cp -p docker/* /usr/bin 4、注册服务 vi /usr/lib/systemd/syste…...

【excel】VBA简介(Visual Basic for Applications)

文章目录 一、基本概念二、语法2.1 数据类型2.11 基本数据类型2.12 常量2.13 数组 2.2 控制语句2.21 条件语句2.22 循环语句2.23 错误处理&#xff1a;On Error2.24 逻辑运算 2.3 其它语句2.31 注释2.32 with语句 2.4 表达式2.41 常见表达式类型2.42 表达式的优先级 2.5 VBA 的…...

【大厂面试AI算法题中的知识点】方向涉及:ML/DL/CV/NLP/大数据...本篇介绍为什么self-attention可以堆叠多层,这有什么作用?

【大厂面试AI算法题中的知识点】方向涉及&#xff1a;ML/DL/CV/NLP/大数据…本篇介绍为什么self-attention可以堆叠多层&#xff0c;这有什么作用&#xff1f; 【大厂面试AI算法题中的知识点】方向涉及&#xff1a;ML/DL/CV/NLP/大数据…本篇介绍为什么self-attention可以堆叠…...

NanoKVM简单开箱测评和拆解,让普通电脑实现BMC/IPMI远程管理功能

Sipeed推出了NanoKVM&#xff0c;简直是没有BMC的台式机和工作站的福音。有了这个就可以轻松实现以往服务器才有的远程管理功能。 NanoKVM 简介 Lichee NanoKVM 是基于 LicheeRV Nano 的 IP-KVM 产品&#xff0c;继承了 LicheeRV Nano 的极致体积 和 强大功能。 NanoKVM 包含…...

【Idea】编译Spring源码 read timeout 问题

Idea现在是大家工作中用的比较多的开发工具&#xff0c;尤其是做java开发的&#xff0c;那么做java开发&#xff0c;了解spring框架源码是提高自己技能水平的一个方式&#xff0c;所以会从spring 官网下载源码&#xff0c;导入到 Idea 工具并编译&#xff0c;但是发现build的时…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.

ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #&#xff1a…...

windows系统MySQL安装文档

概览&#xff1a;本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容&#xff0c;为学习者提供全面的操作指导。关键要点包括&#xff1a; 解压 &#xff1a;下载完成后解压压缩包&#xff0c;得到MySQL 8.…...

热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁

赛门铁克威胁猎手团队最新报告披露&#xff0c;数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据&#xff0c;严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能&#xff0c;但SEMR…...

raid存储技术

1. 存储技术概念 数据存储架构是对数据存储方式、存储设备及相关组件的组织和规划&#xff0c;涵盖存储系统的布局、数据存储策略等&#xff0c;它明确数据如何存储、管理与访问&#xff0c;为数据的安全、高效使用提供支撑。 由计算机中一组存储设备、控制部件和管理信息调度的…...

【笔记】AI Agent 项目 SUNA 部署 之 Docker 构建记录

#工作记录 构建过程记录 Microsoft Windows [Version 10.0.27871.1000] (c) Microsoft Corporation. All rights reserved.(suna-py3.12) F:\PythonProjects\suna>python setup.py --admin███████╗██╗ ██╗███╗ ██╗ █████╗ ██╔════╝…...

统计学(第8版)——统计抽样学习笔记(考试用)

一、统计抽样的核心内容与问题 研究内容 从总体中科学抽取样本的方法利用样本数据推断总体特征&#xff08;均值、比率、总量&#xff09;控制抽样误差与非抽样误差 解决的核心问题 在成本约束下&#xff0c;用少量样本准确推断总体特征量化估计结果的可靠性&#xff08;置…...