代码随想录算法训练营day32
代码随想录算法训练营
—day32
文章目录
- 代码随想录算法训练营
- 前言
- 一、动态规划理论基础
- 二、509. 斐波那契数
- 动态规划
- 动态规划优化空间版
- 递归法
- 三、70. 爬楼梯
- 动态规划
- 动态规划空间优化
- 746. 使用最小花费爬楼梯
- 动态规划空间优化
- 总结
前言
今天是算法营的第32天,希望自己能够坚持下来!
开始动态规划章节了,今日任务:
● 动态规划理论基础
● 509. 斐波那契数
● 70. 爬楼梯
● 746. 使用最小花费爬楼梯
一、动态规划理论基础
文章讲解
视频讲解
动态规划刷题大纲:

动态规划需要有一个推导公式,每一步都是由上一个状态推导出来的。
动态规划五步曲:
- 确定dp数组以及下标的含义
- 确定递归公式
- dp数组如何初始化
- 确定遍历顺序
- 举例推导dp数组
做动规的题目,写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果。
二、509. 斐波那契数
题目链接
文章讲解
视频讲解
思路:
- dp[i]的定义为:第i个数的斐波那契数值是dp[i]
- 递归公式:题目已经把递推公式直接给我们了:dp[i] = dp[i - 1] + dp[i - 2]
- 初始化:dp[0] = 0, dp[1] = 1
- 遍历顺序:因为递推公式是从前往后的,所以遍历顺序是从前往后
动态规划
代码如下:
class Solution {
public://动态规划//dp[i]就是第i个斐波那契数//递推公式:dp[i] = dp[i-1] + dp[i-2];//初始化:dp[0] = 0, dp[1] = 1//遍历顺序:从头到尾int fib(int n) {if (n <= 1) return n;vector<int> dp(n+1);dp[0] = 0;dp[1] = 1;for (int i = 2; i <=n; i++) {dp[i] = dp[i-1] + dp[i-2];}return dp[n];}
};
动态规划优化空间版
因为结果只由前两项决定,所以不需要维护数组,只需要维护三个变量
代码如下:
class Solution {
public://动态规划//dp[i]就是第i个斐波那契数//递推公式:dp[i] = dp[i-1] + dp[i-2];//初始化:dp[0] = 0, dp[1] = 1//遍历顺序:从头到尾int fib(int n) {if (n <= 1) return n;//因为结果只由前两项决定,所以不需要维护数组,只需要维护三个变量int dp[2];dp[0] = 0; //f[n-2]dp[1] = 1; //f[n-1]for (int i = 2; i <=n; i++) {int sum = dp[0] + dp[1]; //f[n] = f[n-1] + f[n-2]dp[0] = dp[1]; //更新f[n-2]dp[1] = sum; //更新f[n-1]}return dp[1];}
};
递归法
这道题也可以用递归法,代码更加简洁:
class Solution {
public://递归法int fib(int n) {if (n < 2) return n;return fib(n - 1) + fib(n - 2);}
};
三、70. 爬楼梯
题目链接
文章讲解
视频讲解
动态规划
思路:
- dp[i]的定义为: 爬到第i层楼梯,有dp[i]种方法
- 递归公式:因为dp[i]都是由i-1走一层或者i-2走两层到达的,而dp[i-1]就是走到i-1层的方法,dp[i-2]就是走到i-2层的方法,那么走到i层就是dp[i-1] + dp[i-2]种方法。
dp[i] = dp[i-1] + dp[i-2]; - 初始化:dp[1] = 1,dp[2] = 2,dp[0]没有含义,题目也说了n是大于0的,所以递推从1开始,初始化1,2,遍历从3开始。
- 遍历顺序:因为递推公式是从前往后的,所以遍历顺序是从前往后
- 举例推导dp数组:

代码如下:
class Solution {
public:int climbStairs(int n) {if (n <= 2) return n;vector<int> dp(n + 1); //需要初始化大小dp[1] = 1;dp[2] = 2;for (int i = 3; i <= n; i++) {dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];}
};
动态规划空间优化
这道题也是只跟i-1和i-2有关,所以只需要维护3个变量就可以了。
代码如下:
class Solution {
public:int climbStairs(int n) {if (n <= 2) return n;int dp[3]; //优化空间dp[1] = 1;dp[2] = 2;for (int i = 3; i <= n; i++) {int sum = dp[1] + dp[2];dp[1] = dp[2];dp[2] = sum;}return dp[2];}
};
746. 使用最小花费爬楼梯
题目链接
文章讲解
视频讲解
思路:
- dp[i]的定义为:代表走到第i台阶需要花费多少
- 递归公式:第i台阶通过第i-1台阶走一步或者第i-2台阶走两步到达,取两者花费最小为最优解dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
- 初始化:默认第一步不花费体力,第一步从下标0或者1开始, dp[0] = 0, dp[1] = 0
- 遍历顺序:因为递推公式是从前往后的,所以遍历顺序是从前往后
代码如下:
class Solution {
public://d[i]含义:代表走到第i台阶需要花费多少//递推公式,第i台阶通过第i-1台阶走一步或者第i-2台阶走两步到达,取两者花费最小为最优解int minCostClimbingStairs(vector<int>& cost) {if (cost.size() < 2) return 0;vector<int> dp(cost.size() + 1);dp[0] = 0; //默认第一步不花费体力dp[1] = 0;for (int i = 2; i <= cost.size(); i++) {dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);}return dp[cost.size()];}
};
动态规划空间优化
同样可以优化空间:
class Solution {
public://d[i]含义:代表走到第i台阶需要花费多少//递推公式,第i台阶通过第i-1台阶走一步或者第i-2台阶走两步到达,取两者花费最小为最优解int minCostClimbingStairs(vector<int>& cost) {if (cost.size() < 2) return 0;int dp[2]; //优化空间dp[0] = 0; //默认第一步不花费体力dp[1] = 0;for (int i = 2; i <= cost.size(); i++) {int sum = min(dp[1] + cost[i - 1], dp[0] + cost[i - 2]);dp[0] = dp[1];dp[1] = sum;}return dp[1];}
};
总结
动态规划第一天!第一次接触动态规划,牢记动态规划五步曲:
- 确定dp数组以及下标的含义
- 确定递归公式
- dp数组如何初始化
- 确定遍历顺序
- 举例推导dp数组
一些小总结:
- 想不明白的时候需要回归dp数组下标含义再理解一下。
- 初始化的时候如果遇到像是dp[0]没有含义的时候,试试从后面的dp[1]dp[2]比较明确初始化的下标开始初始化和递推。
- 当递推公式只涉及i-1,i-2的时候,可以缩小数组大小,只维护最小的数组来节省空间。
明天继续加油!
相关文章:
代码随想录算法训练营day32
代码随想录算法训练营 —day32 文章目录 代码随想录算法训练营前言一、动态规划理论基础二、509. 斐波那契数动态规划动态规划优化空间版递归法 三、70. 爬楼梯动态规划动态规划空间优化 746. 使用最小花费爬楼梯动态规划空间优化 总结 前言 今天是算法营的第32天,…...
缓存之美:万文详解 Caffeine 实现原理(下)
上篇文章:缓存之美:万文详解 Caffeine 实现原理(上) getIfPresent 现在我们对 put 方法有了基本了解,现在我们继续深入 getIfPresent 方法: public class TestReadSourceCode {Testpublic void doRead() …...
中企出海:从国际投资建厂:投前投中投后重点事项
1. 投前重点事项 1.1 市场调研与分析 在国际投资建厂的投前阶段,市场调研与分析是至关重要的基础工作,它能够帮助企业全面了解目标市场,为后续决策提供有力依据。 市场规模与潜力:通过收集和分析目标国家或地区的经济数据、行业…...
github登录用的TOTP和恢复码都丢失了怎么办
从22年左右开始github的登录就需要用TOTP的一个6位秘钥做二次认证登录,如果在用的TOTP软件失效了,可以用github开启二次认证时下载的恢复码重置认证,但是如果你和我一样这两个东西都没了就只能用邮箱重置了,过程给大家分享一下 一…...
最长递增子序列问题(Longest Increasing Subsequence),动态规划法解决,贪心算法 + 二分查找优化
问题描述:在一个大小乱序的数列中,找到一个最大长度的递增子序列,子序列中的数据在原始数列中的相对位置保持不变,可以不连续,但必须递增。 输入描述: 第一行输入数列的长度 n。(1 < n < 200) 第二…...
Python中采用.add_subplot绘制子图的方法简要举例介绍
Python中采用.add_subplot绘制子图的方法简要举例介绍 目录 Python中采用.add_subplot绘制子图的方法简要举例介绍一、Python中绘制子图的方法1.1 add_subplot函数1.2 基本语法(1)add_subplot的核心语法(2)add_subplot在中编程中的…...
纯 Python、Django、FastAPI、Flask、Pyramid、Jupyter、dbt 解析和差异分析
一、纯 Python 1.1 基础概念 Python 是一种高级、通用、解释型的编程语言,以其简洁易读的语法和丰富的标准库而闻名。“纯 Python” 在这里指的是不依赖特定的 Web 框架或数据分析工具,仅使用 Python 原生的功能和标准库来开发应用程序或执行任务。 1.…...
C++实现有限元二维杆单元计算 Bar2D2Node类(纯自研 非套壳)
本系列文章致力于实现“手搓有限元,干翻Ansys的目标”,基本框架为前端显示使用QT实现交互,后端计算采用Visual Studio C。 QT软件界面 具体软件操作可查看下方视频哦。也可以点击这里直接跳转。 直接干翻Ansys?小伙自研有限元 1、…...
wx036基于springboot+vue+uniapp的校园快递平台小程序
开发语言:Java框架:springbootuniappJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包&#…...
Unity中两个UGUI物体的锚点和中心点设置成不一样的,然后怎么使两个物体的位置一样?
一、问题复现 需求:go1物体和我想把go1的位置跟go2的位置一样,但是我通过物体的anchoredPosition以及position还有localposiiton都没有解决问题,使用上面的这三个属性的效果如下: 运行之后,可以看出,go1的…...
兼职全职招聘系统架构与功能分析
2015工作至今,10年资深全栈工程师,CTO,擅长带团队、攻克各种技术难题、研发各类软件产品,我的代码态度:代码虐我千百遍,我待代码如初恋,我的工作态度:极致,责任ÿ…...
HTML5 History API
在 HTML5 的 History API 中,pushState 和 replaceState 方法也可以接受一个 state 对象作为参数。这些方法允许你在改变浏览器路由时不重新加载页面,并且可以附加一些自定义数据。 state 返回在 history 栈顶的 任意 值的拷贝。 let currentState h…...
2025_1_22打卡
402. 移掉 K 位数字 - 力扣(LeetCode) 279. 完全平方数 - 力扣(LeetCode)...
Formality:不可读(unread)的概念
相关阅读 Formalityhttps://blog.csdn.net/weixin_45791458/category_12841971.html?spm1001.2014.3001.5482https://blog.csdn.net/weixin_45791458/category_12841971.html?spm1001.2014.3001.5482 在Formality中有时会遇到不可读(unread)这个概念,本文就将对此…...
stm32f103C8T6和AT24C256链接
模拟IIC总线 myiic.c #ifndef __24CXX_H #define __24CXX_H #include "myiic.h" #define AT24C01 127 //1kbit1*1024/8128byte地址寻址范围为0-127 #define AT24C02 255 #define AT24C04 511 #define AT24C08 1023 #define AT24C16 2047 #define AT24C32 …...
5.SQLAlchemy对两张有关联关系表查询
问题 例如,一个用户可以有多个收获地址。 定义表如下: 用户表 地址表 一般情况,我们会先查询用户表,拿到用户id后,再到地址表中查询关联的地址数据。这样就要执行两次查询。 仅仅为了方便查询,需要一些属…...
2.2.1 语句结构
ST(Structured Text)语言是一种基于IEC 61131-3标准的高级文本编程语言,其语法规则严格且清晰。以下是ST语言中关于分号、注释和代码块的详细语法规则说明: 分号(;)作用:分号用于表示语句的结束。语法规则: 每个独立的语句必须以分号结尾。分号是语句的终止符,用于分隔…...
安当二代TDE透明加密技术与SMS凭据管理系统相结合的数据库安全解决方案
安当二代TDE透明加密技术与安当SMS凭据管理系统的结合,为企业提供了一套完整的数据库安全解决方案,涵盖字段级加密脱敏和动态凭据管理两大核心功能。以下是其实现方式和技术特点的详细说明: 一、安当二代TDE透明加密技术:字段级加…...
es的date类型字段按照原生格式进行分组聚合
PUT student2 { "mappings": {"properties": {"name": {"type": "text","analyzer": "standard" // 使用标准分析器,适合姓名字段},"birthday": {"type": "date&…...
高频次UDP 小包丢包分析
目录 背景测试方法测试结果case1: (经过多级交换机)case2: 长时测试(经过多级交换机)case3: 长时测试(设备直联)可能原因分析解决方法背景 UDP作为面向非连接的传输协议,并不能保证可靠交付。本文编写代码测试设备之间UDP小包传输的可靠性。 测试方法 发送侧基于豆包…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
七、数据库的完整性
七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...
jdbc查询mysql数据库时,出现id顺序错误的情况
我在repository中的查询语句如下所示,即传入一个List<intager>的数据,返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致,会导致返回的id是从小到大排列的,但我不希望这样。 Query("SELECT NEW com…...
