当前位置: 首页 > news >正文

代码随想录算法训练营day32

代码随想录算法训练营

—day32

文章目录

  • 代码随想录算法训练营
  • 前言
  • 一、动态规划理论基础
  • 二、509. 斐波那契数
    • 动态规划
    • 动态规划优化空间版
    • 递归法
  • 三、70. 爬楼梯
    • 动态规划
    • 动态规划空间优化
  • 746. 使用最小花费爬楼梯
    • 动态规划空间优化
  • 总结


前言

今天是算法营的第32天,希望自己能够坚持下来!
开始动态规划章节了,今日任务:
● 动态规划理论基础
● 509. 斐波那契数
● 70. 爬楼梯
● 746. 使用最小花费爬楼梯


一、动态规划理论基础

文章讲解
视频讲解

动态规划刷题大纲:
在这里插入图片描述
动态规划需要有一个推导公式,每一步都是由上一个状态推导出来的。

动态规划五步曲:

  1. 确定dp数组以及下标的含义
  2. 确定递归公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

做动规的题目,写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果。


二、509. 斐波那契数

题目链接
文章讲解
视频讲解

思路:

  1. dp[i]的定义为:第i个数的斐波那契数值是dp[i]
  2. 递归公式:题目已经把递推公式直接给我们了:dp[i] = dp[i - 1] + dp[i - 2]
  3. 初始化:dp[0] = 0, dp[1] = 1
  4. 遍历顺序:因为递推公式是从前往后的,所以遍历顺序是从前往后

动态规划

代码如下:

class Solution {
public://动态规划//dp[i]就是第i个斐波那契数//递推公式:dp[i] = dp[i-1] + dp[i-2];//初始化:dp[0] = 0, dp[1] = 1//遍历顺序:从头到尾int fib(int n) {if (n <= 1) return n;vector<int> dp(n+1);dp[0] = 0;dp[1] = 1;for  (int i = 2; i <=n; i++) {dp[i] = dp[i-1] + dp[i-2];}return dp[n];}
};

动态规划优化空间版

因为结果只由前两项决定,所以不需要维护数组,只需要维护三个变量
代码如下:

class Solution {
public://动态规划//dp[i]就是第i个斐波那契数//递推公式:dp[i] = dp[i-1] + dp[i-2];//初始化:dp[0] = 0, dp[1] = 1//遍历顺序:从头到尾int fib(int n) {if (n <= 1) return n;//因为结果只由前两项决定,所以不需要维护数组,只需要维护三个变量int dp[2];dp[0] = 0; //f[n-2]dp[1] = 1; //f[n-1]for  (int i = 2; i <=n; i++) {int sum = dp[0] + dp[1]; //f[n] = f[n-1] + f[n-2]dp[0] = dp[1]; //更新f[n-2]dp[1] = sum; //更新f[n-1]}return dp[1];}
};

递归法

这道题也可以用递归法,代码更加简洁:

class Solution {
public://递归法int fib(int n) {if (n < 2) return n;return fib(n - 1) + fib(n - 2);}
};

三、70. 爬楼梯

题目链接
文章讲解
视频讲解

动态规划

思路:

  1. dp[i]的定义为: 爬到第i层楼梯,有dp[i]种方法
  2. 递归公式:因为dp[i]都是由i-1走一层或者i-2走两层到达的,而dp[i-1]就是走到i-1层的方法,dp[i-2]就是走到i-2层的方法,那么走到i层就是dp[i-1] + dp[i-2]种方法。
    dp[i] = dp[i-1] + dp[i-2];
  3. 初始化:dp[1] = 1,dp[2] = 2,dp[0]没有含义,题目也说了n是大于0的,所以递推从1开始,初始化1,2,遍历从3开始。
  4. 遍历顺序:因为递推公式是从前往后的,所以遍历顺序是从前往后
  5. 举例推导dp数组:

代码如下:

class Solution {
public:int climbStairs(int n) {if (n <= 2) return n;vector<int> dp(n + 1); //需要初始化大小dp[1] = 1;dp[2] = 2;for (int i = 3; i <= n; i++) {dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];}
};

动态规划空间优化

这道题也是只跟i-1和i-2有关,所以只需要维护3个变量就可以了。

代码如下:

class Solution {
public:int climbStairs(int n) {if (n <= 2) return n;int dp[3]; //优化空间dp[1] = 1;dp[2] = 2;for (int i = 3; i <= n; i++) {int sum = dp[1] + dp[2];dp[1] = dp[2];dp[2] = sum;}return dp[2];}
};

746. 使用最小花费爬楼梯

题目链接
文章讲解
视频讲解

思路:

  1. dp[i]的定义为:代表走到第i台阶需要花费多少
  2. 递归公式:第i台阶通过第i-1台阶走一步或者第i-2台阶走两步到达,取两者花费最小为最优解dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
  3. 初始化:默认第一步不花费体力,第一步从下标0或者1开始, dp[0] = 0, dp[1] = 0
  4. 遍历顺序:因为递推公式是从前往后的,所以遍历顺序是从前往后

代码如下:

class Solution {
public://d[i]含义:代表走到第i台阶需要花费多少//递推公式,第i台阶通过第i-1台阶走一步或者第i-2台阶走两步到达,取两者花费最小为最优解int minCostClimbingStairs(vector<int>& cost) {if (cost.size() < 2) return 0;vector<int> dp(cost.size() + 1);dp[0] = 0; //默认第一步不花费体力dp[1] = 0;for (int i = 2; i <= cost.size(); i++) {dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);}return dp[cost.size()];}
};

动态规划空间优化

同样可以优化空间:

class Solution {
public://d[i]含义:代表走到第i台阶需要花费多少//递推公式,第i台阶通过第i-1台阶走一步或者第i-2台阶走两步到达,取两者花费最小为最优解int minCostClimbingStairs(vector<int>& cost) {if (cost.size() < 2) return 0;int dp[2]; //优化空间dp[0] = 0; //默认第一步不花费体力dp[1] = 0;for (int i = 2; i <= cost.size(); i++) {int sum = min(dp[1] + cost[i - 1], dp[0] + cost[i - 2]);dp[0] = dp[1];dp[1] = sum;}return dp[1];}
};

总结

动态规划第一天!第一次接触动态规划,牢记动态规划五步曲:

  1. 确定dp数组以及下标的含义
  2. 确定递归公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

一些小总结:

  1. 想不明白的时候需要回归dp数组下标含义再理解一下。
  2. 初始化的时候如果遇到像是dp[0]没有含义的时候,试试从后面的dp[1]dp[2]比较明确初始化的下标开始初始化和递推。
  3. 当递推公式只涉及i-1,i-2的时候,可以缩小数组大小,只维护最小的数组来节省空间。

明天继续加油!

相关文章:

代码随想录算法训练营day32

代码随想录算法训练营 —day32 文章目录 代码随想录算法训练营前言一、动态规划理论基础二、509. 斐波那契数动态规划动态规划优化空间版递归法 三、70. 爬楼梯动态规划动态规划空间优化 746. 使用最小花费爬楼梯动态规划空间优化 总结 前言 今天是算法营的第32天&#xff0c…...

缓存之美:万文详解 Caffeine 实现原理(下)

上篇文章&#xff1a;缓存之美&#xff1a;万文详解 Caffeine 实现原理&#xff08;上&#xff09; getIfPresent 现在我们对 put 方法有了基本了解&#xff0c;现在我们继续深入 getIfPresent 方法&#xff1a; public class TestReadSourceCode {Testpublic void doRead() …...

中企出海:从国际投资建厂:投前投中投后重点事项

1. 投前重点事项 1.1 市场调研与分析 在国际投资建厂的投前阶段&#xff0c;市场调研与分析是至关重要的基础工作&#xff0c;它能够帮助企业全面了解目标市场&#xff0c;为后续决策提供有力依据。 市场规模与潜力&#xff1a;通过收集和分析目标国家或地区的经济数据、行业…...

github登录用的TOTP和恢复码都丢失了怎么办

从22年左右开始github的登录就需要用TOTP的一个6位秘钥做二次认证登录&#xff0c;如果在用的TOTP软件失效了&#xff0c;可以用github开启二次认证时下载的恢复码重置认证&#xff0c;但是如果你和我一样这两个东西都没了就只能用邮箱重置了&#xff0c;过程给大家分享一下 一…...

最长递增子序列问题(Longest Increasing Subsequence),动态规划法解决,贪心算法 + 二分查找优化

问题描述&#xff1a;在一个大小乱序的数列中&#xff0c;找到一个最大长度的递增子序列&#xff0c;子序列中的数据在原始数列中的相对位置保持不变&#xff0c;可以不连续&#xff0c;但必须递增。 输入描述&#xff1a; 第一行输入数列的长度 n。(1 < n < 200) 第二…...

Python中采用.add_subplot绘制子图的方法简要举例介绍

Python中采用.add_subplot绘制子图的方法简要举例介绍 目录 Python中采用.add_subplot绘制子图的方法简要举例介绍一、Python中绘制子图的方法1.1 add_subplot函数1.2 基本语法&#xff08;1&#xff09;add_subplot的核心语法&#xff08;2&#xff09;add_subplot在中编程中的…...

纯 Python、Django、FastAPI、Flask、Pyramid、Jupyter、dbt 解析和差异分析

一、纯 Python 1.1 基础概念 Python 是一种高级、通用、解释型的编程语言&#xff0c;以其简洁易读的语法和丰富的标准库而闻名。“纯 Python” 在这里指的是不依赖特定的 Web 框架或数据分析工具&#xff0c;仅使用 Python 原生的功能和标准库来开发应用程序或执行任务。 1.…...

C++实现有限元二维杆单元计算 Bar2D2Node类(纯自研 非套壳)

本系列文章致力于实现“手搓有限元&#xff0c;干翻Ansys的目标”&#xff0c;基本框架为前端显示使用QT实现交互&#xff0c;后端计算采用Visual Studio C。 QT软件界面 具体软件操作可查看下方视频哦。也可以点击这里直接跳转。 直接干翻Ansys&#xff1f;小伙自研有限元 1、…...

wx036基于springboot+vue+uniapp的校园快递平台小程序

开发语言&#xff1a;Java框架&#xff1a;springbootuniappJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#…...

Unity中两个UGUI物体的锚点和中心点设置成不一样的,然后怎么使两个物体的位置一样?

一、问题复现 需求&#xff1a;go1物体和我想把go1的位置跟go2的位置一样&#xff0c;但是我通过物体的anchoredPosition以及position还有localposiiton都没有解决问题&#xff0c;使用上面的这三个属性的效果如下&#xff1a; 运行之后&#xff0c;可以看出&#xff0c;go1的…...

兼职全职招聘系统架构与功能分析

2015工作至今&#xff0c;10年资深全栈工程师&#xff0c;CTO&#xff0c;擅长带团队、攻克各种技术难题、研发各类软件产品&#xff0c;我的代码态度&#xff1a;代码虐我千百遍&#xff0c;我待代码如初恋&#xff0c;我的工作态度&#xff1a;极致&#xff0c;责任&#xff…...

HTML5 History API

在 HTML5 的 History API 中&#xff0c;pushState 和 replaceState 方法也可以接受一个 state 对象作为参数。这些方法允许你在改变浏览器路由时不重新加载页面&#xff0c;并且可以附加一些自定义数据。 state 返回在 history 栈顶的 任意 值的拷贝。 let currentState h…...

2025_1_22打卡

402. 移掉 K 位数字 - 力扣&#xff08;LeetCode&#xff09; 279. 完全平方数 - 力扣&#xff08;LeetCode&#xff09;...

Formality:不可读(unread)的概念

相关阅读 Formalityhttps://blog.csdn.net/weixin_45791458/category_12841971.html?spm1001.2014.3001.5482https://blog.csdn.net/weixin_45791458/category_12841971.html?spm1001.2014.3001.5482 在Formality中有时会遇到不可读(unread)这个概念&#xff0c;本文就将对此…...

stm32f103C8T6和AT24C256链接

模拟IIC总线 myiic.c #ifndef __24CXX_H #define __24CXX_H #include "myiic.h" #define AT24C01 127 //1kbit1*1024/8128byte地址寻址范围为0-127 #define AT24C02 255 #define AT24C04 511 #define AT24C08 1023 #define AT24C16 2047 #define AT24C32 …...

5.SQLAlchemy对两张有关联关系表查询

问题 例如&#xff0c;一个用户可以有多个收获地址。 定义表如下&#xff1a; 用户表 地址表 一般情况&#xff0c;我们会先查询用户表&#xff0c;拿到用户id后&#xff0c;再到地址表中查询关联的地址数据。这样就要执行两次查询。 仅仅为了方便查询&#xff0c;需要一些属…...

2.2.1 语句结构

ST(Structured Text)语言是一种基于IEC 61131-3标准的高级文本编程语言,其语法规则严格且清晰。以下是ST语言中关于分号、注释和代码块的详细语法规则说明: 分号(;)作用:分号用于表示语句的结束。语法规则: 每个独立的语句必须以分号结尾。分号是语句的终止符,用于分隔…...

安当二代TDE透明加密技术与SMS凭据管理系统相结合的数据库安全解决方案

安当二代TDE透明加密技术与安当SMS凭据管理系统的结合&#xff0c;为企业提供了一套完整的数据库安全解决方案&#xff0c;涵盖字段级加密脱敏和动态凭据管理两大核心功能。以下是其实现方式和技术特点的详细说明&#xff1a; 一、安当二代TDE透明加密技术&#xff1a;字段级加…...

es的date类型字段按照原生格式进行分组聚合

PUT student2 { "mappings": {"properties": {"name": {"type": "text","analyzer": "standard" // 使用标准分析器&#xff0c;适合姓名字段},"birthday": {"type": "date&…...

高频次UDP 小包丢包分析

目录 背景测试方法测试结果case1: (经过多级交换机)case2: 长时测试(经过多级交换机)case3: 长时测试(设备直联)可能原因分析解决方法背景 UDP作为面向非连接的传输协议,并不能保证可靠交付。本文编写代码测试设备之间UDP小包传输的可靠性。 测试方法 发送侧基于豆包…...

科目四考试内容

一、考试内容 科目四考试主要包含以下五个方面的内容&#xff1a; 法律法规与规章制度&#xff1a;理解并掌握道路交通规则&#xff0c;涉及交通信号、标志、标线以及相关设施的运用。综合判断与案例分析&#xff1a;培养学员应对复杂交通情况的能力&#xff0c;学会识别违法…...

2015 年 4 月多省(区、市)公务员录用考试 《申论》真题详解

一&#xff09;“给定资料1~2”反映了人们在过去的工作和生活方面形成的很多“惯例”或“习惯做法”正在悄然改变。请分析导致这种改变发生的主要原因。&#xff08;20分&#xff09; 一、给定资料   材料1&#xff1a;   互联网的日益普及和开发利用&#xff0c;不断为人…...

四、CSS效果

一、box-shadow box-shadow:在元素的框架上添加阴影效果 /* x 偏移量 | y 偏移量 | 阴影颜色 */ box-shadow: 60px -16px teal; /* x 偏移量 | y 偏移量 | 阴影模糊半径 | 阴影颜色 */ box-shadow: 10px 5px 5px black; /* x 偏移量 | y 偏移量 | 阴影模糊半径 | 阴影扩散半…...

全面评测 DOCA 开发环境下的 DPU:性能表现、机器学习与金融高频交易下的计算能力分析

本文介绍了我在 DOCA 开发环境下对 DPU 进行测评和计算能力测试的一些真实体验和记录。在测评过程中&#xff0c;我主要关注了 DPU 在高并发数据传输和深度学习场景下的表现&#xff0c;以及基本的系统性能指标&#xff0c;包括 CPU 计算、内存带宽、多线程/多进程能力和 I/O 性…...

图论 八字码

我们可能惊异于某些技巧。我们认为这个技巧真是巧妙啊。或者有人认为我依靠自己的直觉想出了这个表示方法。非常自豪。我认为假设是很小的时候&#xff0c;比如说小学初中&#xff0c;还是不错的。到高中大学&#xff0c;就有一些不成熟了。因为这实际上是一个竞技。很多东西前…...

OSI5GWIFI自组网协议层次对比

目录 5G网络5G与其他协议栈各层映射 5G网络 物理层 (PHY) 是 5G 基站协议架构的最底层&#xff0c;负责将数字数据转换为适合无线传输的信号&#xff0c;并将接收到的无线信号转换为数字数据。实现数据的编码、调制、多天线处理、资源映射等操作。涉及使用新的频段&#xff08…...

北理新源监控平台都管理哪些数据

北理新源信息科技有限公司&#xff08;简称“北理新源”&#xff09;依托北京理工大学电动车辆国家工程研究中心&#xff0c;建设和运营了“新能源汽车国家监测与管理平台”。该平台是国家级的新能源汽车数据监管平台&#xff0c;主要负责对新能源汽车的运行数据进行采集、监测…...

WPS不登录无法使用基本功能的解决方案

前言 WPS不登录无法使用基本功能的原因通常是为了同步数据、提供更多高级功能或满足软件授权要求。‌然而&#xff0c;一些用户可能出于隐私或便捷性的考虑&#xff0c;不愿意登录账号。在这种情况下&#xff0c;WPS可能会限制未登录用户的使用权限&#xff0c;导致工具栏变灰…...

车载软件架构 --- CP和AP作为中央计算平台的软件架构双核心

我是穿拖鞋的汉子&#xff0c;魔都中坚持长期主义的汽车电子工程师。 老规矩&#xff0c;分享一段喜欢的文字&#xff0c;避免自己成为高知识低文化的工程师&#xff1a; 简单&#xff0c;单纯&#xff0c;喜欢独处&#xff0c;独来独往&#xff0c;不易合同频过着接地气的生活…...

【技巧】优雅的使用 pnpm+Monorepo 单体仓库构建一个高效、灵活的多项目架构

单体仓库&#xff08;Monorepo&#xff09;搭建指南&#xff1a;从零开始 单体仓库&#xff08;Monorepo&#xff09;是一种将多个相关项目集中管理在一个仓库中的开发模式。它可以帮助开发者共享代码、统一配置&#xff0c;并简化依赖管理。本文将通过实际代码示例&#xff0…...