当前位置: 首页 > news >正文

深度学习|表示学习|卷积神经网络|参数共享是什么?|07

如是我闻: Parameter Sharing(参数共享)是卷积神经网络(CNN)的一个重要特性,帮助它高效地处理数据。参数共享的本质就是参数“本来也没有变过”。换句话说,在卷积层中,卷积核的参数(权重和偏置)是固定不变的,在整个输入上重复使用。

请添加图片描述


什么是参数共享(Parameter Sharing)?

参数共享 是指:
在卷积层中,同一个卷积核(filter)在整个输入图像上重复使用,计算所有局部区域的特征
换句话说:

  • 对于每一层的卷积操作,同一个卷积核的权重在图像的不同位置是相同的。
  • 这样,模型在处理不同位置的局部区域时,使用的是相同的参数(权重)

参数共享是如何实现的?

1. 卷积核在空间维度上的滑动:
  • 假设输入是一个 32 × 32 32 \times 32 32×32的图像,卷积核大小为 3 × 3 3 \times 3 3×3
    • 卷积核会从左上角开始,逐步在图像上滑动(移动一个步长),对每个 3 × 3 3 \times 3 3×3 区域执行点积计算。
    • 在滑动过程中,卷积核的参数(权重和偏置)保持不变。
    • 这样,卷积核在整个图像上提取相同类型的特征(例如边缘、纹理等)。
2. 跨通道的参数共享:
  • 如果输入图像有多个通道(例如 RGB 图像有 3 个通道),每个卷积核的深度与输入的通道数相同。
  • 卷积核的权重在所有输入通道上共享,并综合每个通道的特征,生成一个输出值。
3. 多个卷积核产生多个特征图:
  • 一层可以有多个卷积核(比如 64 个),每个卷积核学习不同的特征。
  • 每个卷积核的参数是独立的,但它本身的参数在输入的不同位置是共享的。

为什么要使用参数共享?

1. 减少参数数量:
  • 全连接层:
    如果输入是 32 × 32 32 \times 32 32×32 的图像,假设有 1 个神经元连接整个图像,则需要 32 × 32 = 1024 32 \times 32 = 1024 32×32=1024 个参数。如果有 1000 个神经元,则需要 1024 × 1000 = 1 , 024 , 000 1024 \times 1000 = 1,024,000 1024×1000=1,024,000个参数。
  • 卷积层:
    使用一个大小为 3 × 3 3 \times 3 3×3的卷积核,它只有 3 × 3 = 9 3 \times 3 = 9 3×3=9 个参数(再加一个偏置,共 10 个参数),而它可以在整个图像上滑动重复使用。

因此,参数共享大幅减少了模型的参数数量,使模型更容易训练,并减少过拟合的风险。

2. 捕获空间不变性:
  • 自然数据(如图像)中的某些特征是局部的和重复的。例如,边缘、角点或纹理可能出现在图像的不同位置。
  • 参数共享允许卷积核在整个图像上“搜索”这些特征,而无需为每个位置单独训练一组参数。
3. 提高计算效率:
  • 共享参数减少了计算量,因为在整个输入上重复使用相同的权重,而不是为每个位置训练独立的权重。

参数共享的一个具体示例

输入:
  • 假设输入是一个 32 × 32 × 3 32 \times 32 \times 3 32×32×3的 RGB 图像。
卷积核:
  • 使用一个大小为 3 × 3 × 3 3 \times 3 \times 3 3×3×3 的卷积核。
  • 该卷积核有 3 × 3 × 3 = 27 3 \times 3 \times 3 = 27 3×3×3=27 个权重,加上 1 个偏置参数,总共有 28 个参数。
滑动操作:
  • 卷积核会从左上角开始,在整个图像上滑动,逐步提取特征。
  • 对于每个 3 × 3 × 3 3 \times 3 \times 3 3×3×3 的局部区域,卷积核会执行点积计算,并生成一个输出值。
  • 卷积核的 28 个参数在整个 32 × 32 × 3 32 \times 32 \times 3 32×32×3 的输入上是共享的。
输出:
  • 如果输出特征图的大小是 30 × 30 30 \times 30 30×30(假设没有填充),那么整个输出中包含 30 × 30 = 900 30 \times 30 = 900 30×30=900 个值,这 900 个值是由同一个卷积核生成的。

没有参数共享会怎样?

假如没有参数共享,每个位置的感受野都需要一个独立的卷积核参数:

  • 如果输入是 32 × 32 × 3 32 \times 32 \times 3 32×32×3,卷积核大小为 3 × 3 × 3 3 \times 3 \times 3 3×3×3,输出大小是 30 × 30 × 1 30 \times 30 \times 1 30×30×1,那么:
    • 每个位置需要独立的 3 × 3 × 3 = 27 3 \times 3 \times 3 = 27 3×3×3=27个参数。
    • 总参数数目为 30 × 30 × 27 = 24 , 300 30 \times 30 \times 27 = 24,300 30×30×27=24,300

相比之下,使用参数共享时,卷积核只需要 28 个参数(包含偏置),参数大幅减少。


卷积层的参数共享 vs 全连接层

特性卷积层(参数共享)全连接层(无参数共享)
连接方式每个卷积核只与局部区域相连,参数共享每个神经元与输入的所有单元相连
参数数量参数数量较少,参数共享参数数量多,与输入规模成正比
特征提取能力强调局部特征(如边缘、纹理),支持平移不变性更适合全局特征,不支持局部模式提取
计算效率更高,因为参数共享且局部连接计算开销大,特别是高维输入

总的来说

  1. 参数共享的本质:
    卷积核的权重在输入数据的不同区域共享,从而减少参数数量并提高计算效率。

  2. 带来的优势:

    • 参数数量减少,更易训练。
    • 特征共享,对输入的不同位置学习相同的模式。
    • 提高模型的泛化能力,降低过拟合风险。

以上

相关文章:

深度学习|表示学习|卷积神经网络|参数共享是什么?|07

如是我闻: Parameter Sharing(参数共享)是卷积神经网络(CNN)的一个重要特性,帮助它高效地处理数据。参数共享的本质就是参数“本来也没有变过”。换句话说,在卷积层中,卷积核的参数&…...

基于相机内参推导的透视投影矩阵

基于相机内参推导透视投影矩阵(splatam): M c a m [ 2 ⋅ f x w 0.0 ( w − 2 ⋅ c x ) w 0.0 0.0 2 ⋅ f y h ( h − 2 ⋅ c y ) h 0.0 0 0 f a r n e a r n e a r − f a r 2 f a r ⋅ n e a r n e a r − f a r 0.0 0.0 − 1.0 0.0 ] M_…...

浅析Dubbo 原理:架构、通信与调用流程

一、Dubbo 简介 Dubbo 是阿里巴巴开源的高性能、轻量级的 Java RPC(Remote Procedure Call,远程过程调用)框架,旨在实现不同服务之间的远程通信和调用。在分布式系统中,不同服务可能部署在不同的服务器上,D…...

03垃圾回收篇(D3_垃圾收集器的选择及相关参数)

目录 学习前言 一、收集器的选择 二、GC日志参数 三、垃圾收集相关的常用参数 四、内存分配与回收策略 1. 对象优先在Eden分配 2. 大对象直接进入老年代 3. 长期存活的对象将进入老年代 4. 动态对象年龄判定 5. 空间分配担保 学习前言 本章主要学习垃圾收集器的选择及…...

一、引论,《组合数学(第4版)》卢开澄 卢华明

零、前言 发现自己数数题做的很烂,重新学一遍组合数学吧。 参考卢开澄 卢华明 编著的《组合数学(第4版)》,只打算学前四章。 通过几个经典问题来了解组合数学所研究的内容。 一、幻方问题 据说大禹治水之前,河里冒出来一只乌龟&#xff0c…...

Vue3+TS 实现批量拖拽文件夹上传图片组件封装

1、html 代码&#xff1a; 代码中的表格引入了 vxe-table 插件 <Tag /> 是自己封装的说明组件 表格列表这块我使用了插槽来增加扩展性&#xff0c;可根据自己需求&#xff0c;在组件外部做调整 <template><div class"dragUpload"><el-dialo…...

二叉树的所有路径(力扣257)

因为题目要求路径是从上到下的&#xff0c;所以最好采用前序遍历。这样可以保证按从上到下的顺序将节点的值存入一个路径数组中。另外&#xff0c;此题还有一个难点就是如何求得所有路径。为了解决这个问题&#xff0c;我们需要用到回溯。回溯和递归不分家&#xff0c;每递归一…...

Python OrderedDict 实现 Least Recently used(LRU)缓存

OrderedDict 实现 Least Recently used&#xff08;LRU&#xff09;缓存 引言正文 引言 LRU 缓存是一种缓存替换策略&#xff0c;当缓存空间不足时&#xff0c;会移除最久未使用的数据以腾出空间存放新的数据。LRU 缓存的特点&#xff1a; 有限容量&#xff1a;缓存拥有固定的…...

LabVIEW项目中的工控机与普通电脑选择

工控机&#xff08;Industrial PC&#xff09;与普通电脑在硬件设计、性能要求、稳定性、环境适应性等方面存在显著差异。了解这些区别对于在LabVIEW项目中选择合适的硬件至关重要。下面将详细分析这两种设备的主要差异&#xff0c;并为LabVIEW项目中的选择提供指导。 ​ 硬件设…...

Ansys Speos | Speos Meshing 网格最佳实践

概述 网格划分是在各种计算应用中处理3D几何的基本步骤&#xff1a; 表面和体积&#xff1a;网格允许通过将复杂的表面和体积分解成更简单的几何元素&#xff08;如三角形、四边形、四面体或六面体&#xff09;来表示复杂的表面和体积。 模拟和渲染&#xff1a;网格是创建离散…...

elasticsearch segment数量对读写性能的影响

index.merge.policy.segments_per_tier 是一个配置选项&#xff0c;用于控制 Elasticsearch 中段&#xff08;segment&#xff09;合并策略的行为。它定义了在每一层的段合并过程中&#xff0c;允许存在的最大段数量。调整这个参数可以优化索引性能和资源使用。 假设你有一个索…...

全同态加密理论、生态现状与未来展望(中2)

《全同态加密理论、生态现状与未来展望》系列由lynndell2010gmail.com和mutourend2010gmail.com整理原创发布&#xff0c;分为上中下三个系列&#xff1a; 全同态加密理论、生态现状与未来展望&#xff08;上&#xff09;&#xff1a;专注于介绍全同态加密理论知识。全同态加密…...

鸿蒙UI(ArkUI-方舟UI框架)-开发布局

返回主章节 → 鸿蒙UI&#xff08;ArkUI-方舟UI框架&#xff09; 开发布局 1、布局概述 1&#xff09;布局结构 2&#xff09;布局元素组成 3&#xff09;如何选择布局 声明式UI提供了以下10种常见布局&#xff0c;开发者可根据实际应用场景选择合适的布局进行页面开发。 …...

RPC是什么?和HTTP区别?

RPC 是什么&#xff1f;HTTP 是什么&#xff1f; 作为一个程序员&#xff0c;假设我们需要从A电脑的进程发送一段数据到B电脑的进程&#xff0c;我们一般会在代码中使用 Socket 进行编程。 此时&#xff0c;可选性一般就是 TCP 和 UDP 二选一&#xff0c;由于 TCP 可靠、UDP 不…...

Linux C\C++编程-建立文件和内存映射

【图书推荐】《Linux C与C一线开发实践&#xff08;第2版&#xff09;》_linux c与c一线开发实践pdf-CSDN博客 《Linux C与C一线开发实践&#xff08;第2版&#xff09;&#xff08;Linux技术丛书&#xff09;》(朱文伟&#xff0c;李建英)【摘要 书评 试读】- 京东图书 Linu…...

行政纠错——pycorrector学习

pycorrector是一个开源中文文本纠错工具&#xff0c;它支持对中文文本进行音似、形似和语法错误的纠正。此工具是使用Python3进行开发的&#xff0c;并整合了Kenlm、ConvSeq2Seq、BERT、MacBERT、ELECTRA、ERNIE、Transformer等多种模型来实现文本纠错功能。pycorrector官方仓库…...

Go的defer原理

Go 的 defer 原理 defer 是 Go 语言中的一个关键字&#xff0c;用于延迟执行一个函数调用。它通常用于处理资源释放、连接关闭等操作&#xff0c;确保这些操作在函数返回之前执行。 1. 什么是 defer&#xff1f; defer 关键字用于延迟执行一个函数调用&#xff0c;直到包含它…...

Windows 下本地 Docker RAGFlow 部署指南

Windows 下本地 Docker RAGFlow 部署指南 环境要求部署步骤1. 克隆代码仓库2. 配置 Docker 镜像加速(可选)3. 修改端口配置(可选)4. 启动服务5. 验证服务状态6. 访问服务7. 登录系统8. 配置模型8.1 使用 Ollama 本地模型8.2 使用在线 API 服务9. 开始使用10. 常见问题处理端…...

专题三_穷举vs暴搜vs深搜vs回溯vs剪枝_全排列

dfs解决 全排列&子集 1.全排列 link:46. 全排列 - 力扣&#xff08;LeetCode&#xff09; 全局变量回溯 code class Solution { public:vector<vector<int>> ans;vector<int> cur;vector<bool> used;vector<vector<int>> permute…...

【IEEE Fellow 主讲报告| EI检索稳定】第五届机器学习与智能系统工程国际学术会议(MLISE 2025)

重要信息 会议时间地点&#xff1a;2025年6月13-15日 中国深圳 会议官网&#xff1a;http://mlise.org EI Compendex/Scopus稳定检索 会议简介 第五届机器学习与智能系统工程国际学术会议将于6月13-15日在中国深圳隆重召开。本次会议旨在搭建一个顶尖的学术交流平台&#xf…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

什么是库存周转?如何用进销存系统提高库存周转率?

你可能听说过这样一句话&#xff1a; “利润不是赚出来的&#xff0c;是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业&#xff0c;很多企业看着销售不错&#xff0c;账上却没钱、利润也不见了&#xff0c;一翻库存才发现&#xff1a; 一堆卖不动的旧货…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

return this;返回的是谁

一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请&#xff0c;不同级别的经理有不同的审批权限&#xff1a; // 抽象处理者&#xff1a;审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !

我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...

算法打卡第18天

从中序与后序遍历序列构造二叉树 (力扣106题) 给定两个整数数组 inorder 和 postorder &#xff0c;其中 inorder 是二叉树的中序遍历&#xff0c; postorder 是同一棵树的后序遍历&#xff0c;请你构造并返回这颗 二叉树 。 示例 1: 输入&#xff1a;inorder [9,3,15,20,7…...

恶补电源:1.电桥

一、元器件的选择 搜索并选择电桥&#xff0c;再multisim中选择FWB&#xff0c;就有各种型号的电桥: 电桥是用来干嘛的呢&#xff1f; 它是一个由四个二极管搭成的“桥梁”形状的电路&#xff0c;用来把交流电&#xff08;AC&#xff09;变成直流电&#xff08;DC&#xff09;。…...