当前位置: 首页 > news >正文

深度学习|表示学习|卷积神经网络|参数共享是什么?|07

如是我闻: Parameter Sharing(参数共享)是卷积神经网络(CNN)的一个重要特性,帮助它高效地处理数据。参数共享的本质就是参数“本来也没有变过”。换句话说,在卷积层中,卷积核的参数(权重和偏置)是固定不变的,在整个输入上重复使用。

请添加图片描述


什么是参数共享(Parameter Sharing)?

参数共享 是指:
在卷积层中,同一个卷积核(filter)在整个输入图像上重复使用,计算所有局部区域的特征
换句话说:

  • 对于每一层的卷积操作,同一个卷积核的权重在图像的不同位置是相同的。
  • 这样,模型在处理不同位置的局部区域时,使用的是相同的参数(权重)

参数共享是如何实现的?

1. 卷积核在空间维度上的滑动:
  • 假设输入是一个 32 × 32 32 \times 32 32×32的图像,卷积核大小为 3 × 3 3 \times 3 3×3
    • 卷积核会从左上角开始,逐步在图像上滑动(移动一个步长),对每个 3 × 3 3 \times 3 3×3 区域执行点积计算。
    • 在滑动过程中,卷积核的参数(权重和偏置)保持不变。
    • 这样,卷积核在整个图像上提取相同类型的特征(例如边缘、纹理等)。
2. 跨通道的参数共享:
  • 如果输入图像有多个通道(例如 RGB 图像有 3 个通道),每个卷积核的深度与输入的通道数相同。
  • 卷积核的权重在所有输入通道上共享,并综合每个通道的特征,生成一个输出值。
3. 多个卷积核产生多个特征图:
  • 一层可以有多个卷积核(比如 64 个),每个卷积核学习不同的特征。
  • 每个卷积核的参数是独立的,但它本身的参数在输入的不同位置是共享的。

为什么要使用参数共享?

1. 减少参数数量:
  • 全连接层:
    如果输入是 32 × 32 32 \times 32 32×32 的图像,假设有 1 个神经元连接整个图像,则需要 32 × 32 = 1024 32 \times 32 = 1024 32×32=1024 个参数。如果有 1000 个神经元,则需要 1024 × 1000 = 1 , 024 , 000 1024 \times 1000 = 1,024,000 1024×1000=1,024,000个参数。
  • 卷积层:
    使用一个大小为 3 × 3 3 \times 3 3×3的卷积核,它只有 3 × 3 = 9 3 \times 3 = 9 3×3=9 个参数(再加一个偏置,共 10 个参数),而它可以在整个图像上滑动重复使用。

因此,参数共享大幅减少了模型的参数数量,使模型更容易训练,并减少过拟合的风险。

2. 捕获空间不变性:
  • 自然数据(如图像)中的某些特征是局部的和重复的。例如,边缘、角点或纹理可能出现在图像的不同位置。
  • 参数共享允许卷积核在整个图像上“搜索”这些特征,而无需为每个位置单独训练一组参数。
3. 提高计算效率:
  • 共享参数减少了计算量,因为在整个输入上重复使用相同的权重,而不是为每个位置训练独立的权重。

参数共享的一个具体示例

输入:
  • 假设输入是一个 32 × 32 × 3 32 \times 32 \times 3 32×32×3的 RGB 图像。
卷积核:
  • 使用一个大小为 3 × 3 × 3 3 \times 3 \times 3 3×3×3 的卷积核。
  • 该卷积核有 3 × 3 × 3 = 27 3 \times 3 \times 3 = 27 3×3×3=27 个权重,加上 1 个偏置参数,总共有 28 个参数。
滑动操作:
  • 卷积核会从左上角开始,在整个图像上滑动,逐步提取特征。
  • 对于每个 3 × 3 × 3 3 \times 3 \times 3 3×3×3 的局部区域,卷积核会执行点积计算,并生成一个输出值。
  • 卷积核的 28 个参数在整个 32 × 32 × 3 32 \times 32 \times 3 32×32×3 的输入上是共享的。
输出:
  • 如果输出特征图的大小是 30 × 30 30 \times 30 30×30(假设没有填充),那么整个输出中包含 30 × 30 = 900 30 \times 30 = 900 30×30=900 个值,这 900 个值是由同一个卷积核生成的。

没有参数共享会怎样?

假如没有参数共享,每个位置的感受野都需要一个独立的卷积核参数:

  • 如果输入是 32 × 32 × 3 32 \times 32 \times 3 32×32×3,卷积核大小为 3 × 3 × 3 3 \times 3 \times 3 3×3×3,输出大小是 30 × 30 × 1 30 \times 30 \times 1 30×30×1,那么:
    • 每个位置需要独立的 3 × 3 × 3 = 27 3 \times 3 \times 3 = 27 3×3×3=27个参数。
    • 总参数数目为 30 × 30 × 27 = 24 , 300 30 \times 30 \times 27 = 24,300 30×30×27=24,300

相比之下,使用参数共享时,卷积核只需要 28 个参数(包含偏置),参数大幅减少。


卷积层的参数共享 vs 全连接层

特性卷积层(参数共享)全连接层(无参数共享)
连接方式每个卷积核只与局部区域相连,参数共享每个神经元与输入的所有单元相连
参数数量参数数量较少,参数共享参数数量多,与输入规模成正比
特征提取能力强调局部特征(如边缘、纹理),支持平移不变性更适合全局特征,不支持局部模式提取
计算效率更高,因为参数共享且局部连接计算开销大,特别是高维输入

总的来说

  1. 参数共享的本质:
    卷积核的权重在输入数据的不同区域共享,从而减少参数数量并提高计算效率。

  2. 带来的优势:

    • 参数数量减少,更易训练。
    • 特征共享,对输入的不同位置学习相同的模式。
    • 提高模型的泛化能力,降低过拟合风险。

以上

相关文章:

深度学习|表示学习|卷积神经网络|参数共享是什么?|07

如是我闻: Parameter Sharing(参数共享)是卷积神经网络(CNN)的一个重要特性,帮助它高效地处理数据。参数共享的本质就是参数“本来也没有变过”。换句话说,在卷积层中,卷积核的参数&…...

基于相机内参推导的透视投影矩阵

基于相机内参推导透视投影矩阵(splatam): M c a m [ 2 ⋅ f x w 0.0 ( w − 2 ⋅ c x ) w 0.0 0.0 2 ⋅ f y h ( h − 2 ⋅ c y ) h 0.0 0 0 f a r n e a r n e a r − f a r 2 f a r ⋅ n e a r n e a r − f a r 0.0 0.0 − 1.0 0.0 ] M_…...

浅析Dubbo 原理:架构、通信与调用流程

一、Dubbo 简介 Dubbo 是阿里巴巴开源的高性能、轻量级的 Java RPC(Remote Procedure Call,远程过程调用)框架,旨在实现不同服务之间的远程通信和调用。在分布式系统中,不同服务可能部署在不同的服务器上,D…...

03垃圾回收篇(D3_垃圾收集器的选择及相关参数)

目录 学习前言 一、收集器的选择 二、GC日志参数 三、垃圾收集相关的常用参数 四、内存分配与回收策略 1. 对象优先在Eden分配 2. 大对象直接进入老年代 3. 长期存活的对象将进入老年代 4. 动态对象年龄判定 5. 空间分配担保 学习前言 本章主要学习垃圾收集器的选择及…...

一、引论,《组合数学(第4版)》卢开澄 卢华明

零、前言 发现自己数数题做的很烂,重新学一遍组合数学吧。 参考卢开澄 卢华明 编著的《组合数学(第4版)》,只打算学前四章。 通过几个经典问题来了解组合数学所研究的内容。 一、幻方问题 据说大禹治水之前,河里冒出来一只乌龟&#xff0c…...

Vue3+TS 实现批量拖拽文件夹上传图片组件封装

1、html 代码&#xff1a; 代码中的表格引入了 vxe-table 插件 <Tag /> 是自己封装的说明组件 表格列表这块我使用了插槽来增加扩展性&#xff0c;可根据自己需求&#xff0c;在组件外部做调整 <template><div class"dragUpload"><el-dialo…...

二叉树的所有路径(力扣257)

因为题目要求路径是从上到下的&#xff0c;所以最好采用前序遍历。这样可以保证按从上到下的顺序将节点的值存入一个路径数组中。另外&#xff0c;此题还有一个难点就是如何求得所有路径。为了解决这个问题&#xff0c;我们需要用到回溯。回溯和递归不分家&#xff0c;每递归一…...

Python OrderedDict 实现 Least Recently used(LRU)缓存

OrderedDict 实现 Least Recently used&#xff08;LRU&#xff09;缓存 引言正文 引言 LRU 缓存是一种缓存替换策略&#xff0c;当缓存空间不足时&#xff0c;会移除最久未使用的数据以腾出空间存放新的数据。LRU 缓存的特点&#xff1a; 有限容量&#xff1a;缓存拥有固定的…...

LabVIEW项目中的工控机与普通电脑选择

工控机&#xff08;Industrial PC&#xff09;与普通电脑在硬件设计、性能要求、稳定性、环境适应性等方面存在显著差异。了解这些区别对于在LabVIEW项目中选择合适的硬件至关重要。下面将详细分析这两种设备的主要差异&#xff0c;并为LabVIEW项目中的选择提供指导。 ​ 硬件设…...

Ansys Speos | Speos Meshing 网格最佳实践

概述 网格划分是在各种计算应用中处理3D几何的基本步骤&#xff1a; 表面和体积&#xff1a;网格允许通过将复杂的表面和体积分解成更简单的几何元素&#xff08;如三角形、四边形、四面体或六面体&#xff09;来表示复杂的表面和体积。 模拟和渲染&#xff1a;网格是创建离散…...

elasticsearch segment数量对读写性能的影响

index.merge.policy.segments_per_tier 是一个配置选项&#xff0c;用于控制 Elasticsearch 中段&#xff08;segment&#xff09;合并策略的行为。它定义了在每一层的段合并过程中&#xff0c;允许存在的最大段数量。调整这个参数可以优化索引性能和资源使用。 假设你有一个索…...

全同态加密理论、生态现状与未来展望(中2)

《全同态加密理论、生态现状与未来展望》系列由lynndell2010gmail.com和mutourend2010gmail.com整理原创发布&#xff0c;分为上中下三个系列&#xff1a; 全同态加密理论、生态现状与未来展望&#xff08;上&#xff09;&#xff1a;专注于介绍全同态加密理论知识。全同态加密…...

鸿蒙UI(ArkUI-方舟UI框架)-开发布局

返回主章节 → 鸿蒙UI&#xff08;ArkUI-方舟UI框架&#xff09; 开发布局 1、布局概述 1&#xff09;布局结构 2&#xff09;布局元素组成 3&#xff09;如何选择布局 声明式UI提供了以下10种常见布局&#xff0c;开发者可根据实际应用场景选择合适的布局进行页面开发。 …...

RPC是什么?和HTTP区别?

RPC 是什么&#xff1f;HTTP 是什么&#xff1f; 作为一个程序员&#xff0c;假设我们需要从A电脑的进程发送一段数据到B电脑的进程&#xff0c;我们一般会在代码中使用 Socket 进行编程。 此时&#xff0c;可选性一般就是 TCP 和 UDP 二选一&#xff0c;由于 TCP 可靠、UDP 不…...

Linux C\C++编程-建立文件和内存映射

【图书推荐】《Linux C与C一线开发实践&#xff08;第2版&#xff09;》_linux c与c一线开发实践pdf-CSDN博客 《Linux C与C一线开发实践&#xff08;第2版&#xff09;&#xff08;Linux技术丛书&#xff09;》(朱文伟&#xff0c;李建英)【摘要 书评 试读】- 京东图书 Linu…...

行政纠错——pycorrector学习

pycorrector是一个开源中文文本纠错工具&#xff0c;它支持对中文文本进行音似、形似和语法错误的纠正。此工具是使用Python3进行开发的&#xff0c;并整合了Kenlm、ConvSeq2Seq、BERT、MacBERT、ELECTRA、ERNIE、Transformer等多种模型来实现文本纠错功能。pycorrector官方仓库…...

Go的defer原理

Go 的 defer 原理 defer 是 Go 语言中的一个关键字&#xff0c;用于延迟执行一个函数调用。它通常用于处理资源释放、连接关闭等操作&#xff0c;确保这些操作在函数返回之前执行。 1. 什么是 defer&#xff1f; defer 关键字用于延迟执行一个函数调用&#xff0c;直到包含它…...

Windows 下本地 Docker RAGFlow 部署指南

Windows 下本地 Docker RAGFlow 部署指南 环境要求部署步骤1. 克隆代码仓库2. 配置 Docker 镜像加速(可选)3. 修改端口配置(可选)4. 启动服务5. 验证服务状态6. 访问服务7. 登录系统8. 配置模型8.1 使用 Ollama 本地模型8.2 使用在线 API 服务9. 开始使用10. 常见问题处理端…...

专题三_穷举vs暴搜vs深搜vs回溯vs剪枝_全排列

dfs解决 全排列&子集 1.全排列 link:46. 全排列 - 力扣&#xff08;LeetCode&#xff09; 全局变量回溯 code class Solution { public:vector<vector<int>> ans;vector<int> cur;vector<bool> used;vector<vector<int>> permute…...

【IEEE Fellow 主讲报告| EI检索稳定】第五届机器学习与智能系统工程国际学术会议(MLISE 2025)

重要信息 会议时间地点&#xff1a;2025年6月13-15日 中国深圳 会议官网&#xff1a;http://mlise.org EI Compendex/Scopus稳定检索 会议简介 第五届机器学习与智能系统工程国际学术会议将于6月13-15日在中国深圳隆重召开。本次会议旨在搭建一个顶尖的学术交流平台&#xf…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术&#xff0c;它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton)&#xff1a;由层级结构的骨头组成&#xff0c;类似于人体骨骼蒙皮 (Mesh Skinning)&#xff1a;将模型网格顶点绑定到骨骼上&#xff0c;使骨骼移动…...

代理篇12|深入理解 Vite中的Proxy接口代理配置

在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

SiFli 52把Imagie图片,Font字体资源放在指定位置,编译成指定img.bin和font.bin的问题

分区配置 (ptab.json) img 属性介绍&#xff1a; img 属性指定分区存放的 image 名称&#xff0c;指定的 image 名称必须是当前工程生成的 binary 。 如果 binary 有多个文件&#xff0c;则以 proj_name:binary_name 格式指定文件名&#xff0c; proj_name 为工程 名&…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问&#xff08;基础概念问题&#xff09; 1. 请解释Spring框架的核心容器是什么&#xff1f;它在Spring中起到什么作用&#xff1f; Spring框架的核心容器是IoC容器&#…...

springboot整合VUE之在线教育管理系统简介

可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生&#xff0c;小白用户&#xff0c;想学习知识的 有点基础&#xff0c;想要通过项…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 &#xff1a;HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09; 默认端口 &#xff1a;HTTP 使用 80 端口&#xff0c;HTTPS 使用 443 端口。 请求方法 &#xff1a; GET &#xff1a;用于获取资源&#xff0c;…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...