当前位置: 首页 > news >正文

单片机基础模块学习——按键

一、按键原理图


当把跳线帽J5放在右侧,属于独立按键模式(BTN模式),放在左侧为矩阵键盘模式(KBD模式)

整体结构是一端接地,一端接控制引脚


之前提到的都是使用了GPIO-准双向口的输出功能,按键模块用到的是输入功能


实际每一个按键的原理图如下,vcc电阻都在芯片内部,当按键断开时,流过电阻的电流称为灌电流,大概几十毫安,因此此时引脚为高电平。按下时与地接通为低电平

二、独立按键模块代码

#include "key.h"unsigned char Key_Read_BTN(void)
{if(P33==0)return 4;else if(P32 ==0)return 5;else if(P31 ==0)return 6;else if(P30 ==0)return 7;elsereturn 0;
}

三、矩阵键盘

矩阵键盘用到8个引脚,下方的四个作为输出引脚用,右侧四个用做输入引脚用,矩阵键盘的原理利用扫描法


下面的四个引脚都输出高电平的话,那么无论是否按下,根据上面的原理图可知,右边都会监测到低电平 


如果P44设置为低电平,当按下S5时,由于S9,S13,S17均断开,所以P32连接到S5为低电平


 四、独立按键与矩阵键盘对比

  • 独立按键:

                优点:操作简便

                缺点:占用I/O资源多

  • 矩阵键盘:

                优点:节省I/O资源

                缺点:操作较为复杂

五、矩阵键盘模块代码

这里将Key_New设置为unsigned int型,因为有16个按键,需要16位数据来存储

#include "key.h"unsigned char Key_Read_BTN(void)
{if(P33==0)return 4;else if(P32 ==0)return 5;else if(P31 ==0)return 6;else if(P30 ==0)return 7;elsereturn 0;
}
unsigned char Key_Read_KBD(void)
{unsigned int Key_New;//16_bitunsigned char Key_Val;P44=0;P42=1;P35=1;P34=1;Key_New=(P3&0x0f); //xxxx xxxx xxxx s4 s5 s6 s7P44=1;P42=0;P35=1;P34=1;Key_New=(Key_New<<4)|(P3&0x0f); //xxxx xxxx s4 s5 s6 s7 s8 s9 s10 s11 P44=1;P42=1;P35=0;P34=1;Key_New=(Key_New<<4)|(P3&0x0f); //xxxx s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16P44=1;P42=1;P35=1;P34=0;Key_New=(Key_New<<4)|(P3&0x0f); //s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20//s4//0111 1111 1111 1111b =0xFFFF//1000 0000 0000 0000b =0x8000switch(~Key_New){case 0x8000:Key_Val =4;break;case 0x4000:Key_Val =5;break;case 0x2000:Key_Val =6;break;case 0x1000:Key_Val =7;break;case 0x0800:Key_Val =8;break;case 0x0400:Key_Val =9;break;case 0x0200:Key_Val =10;break;case 0x0100:Key_Val =11;break;case 0x0080:Key_Val =12;break;case 0x0040:Key_Val =13;break;case 0x0020:Key_Val =14;break;case 0x0010:Key_Val =15;break;case 0x0008:Key_Val =16;break;case 0x0004:Key_Val =17;break;case 0x0002:Key_Val =18;break;case 0x0001:Key_Val =19;break;default:Key_Val=0;}return Key_Val;
}

六、主函数代码 

#include "STC15F2K60S2.H"
#include "seg.h"
#include "tim.h"
#include "led.h"
#include "init.h"
#include "key.h"//Seg
unsigned char pucSeg_Buf[9],pucSeg_Code[9],pucSeg_Pos=0;//字符数组以/0结尾,所以要有9位//Key
unsigned char ucKey_Val =0;//Timer
unsigned long ulms =0;
unsigned int uiSeg_Dly=0;
unsigned int uiKey_Dly=0;void Seg_Proc(void);
void Key_Proc(void);void main(void)
{Cls_Peripheral();Timer0Init();EA=1;while(1){Seg_Proc();Key_Proc();}}void Seg_Proc(void)
{if(uiSeg_Dly<200)return;uiSeg_Dly =0;sprintf(pucSeg_Buf,"%02d      ",(int)ucKey_Val);//奖读取到的按键数制进行输出 加7个空格键熄灭后面的数码管Seg_Tran(pucSeg_Buf,pucSeg_Code);
}
void Key_Proc(void)
{if(uiKey_Dly<20)//20毫秒的间隔进行读取,避免漏掉读取return;uiKey_Dly =0;ucKey_Val =Key_Read_KBD();
}
void Time_0(void) interrupt 1
{ulms++;uiSeg_Dly++;uiKey_Dly++;if(ulms % 2==0){pucSeg_Pos=(pucSeg_Pos+1)%8;//实现pucSeg_Pos从0-7循环的操作Seg_Disp(pucSeg_Code,pucSeg_Pos);}
}

相关文章:

单片机基础模块学习——按键

一、按键原理图 当把跳线帽J5放在右侧&#xff0c;属于独立按键模式&#xff08;BTN模式&#xff09;&#xff0c;放在左侧为矩阵键盘模式&#xff08;KBD模式&#xff09; 整体结构是一端接地&#xff0c;一端接控制引脚 之前提到的都是使用了GPIO-准双向口的输出功能&#x…...

polars as pl

import polars as pl#和pandas类似,但是处理大型数据集有更好的性能. #necessary import pandas as pd#导入csv文件的库 import numpy as np#进行矩阵运算的库 #metric from sklearn.metrics import roc_auc_score#导入roc_auc曲线 #KFold是直接分成k折,StratifiedKFold还要考虑…...

重构(4)

&#xff08;一&#xff09;添加解释性变量&#xff0c;使得代码更容易理解&#xff0c;更容易调试&#xff0c;也可以方便功能复用 解释性的变量 总价格为商品总价&#xff08;单价*数量&#xff09;-折扣&#xff08;超过100个以上的打9折&#xff09;邮费&#xff08;原价的…...

神经网络|(三)线性回归基础知识

【1】引言 前序学习进程中&#xff0c;已经对简单神经元的工作模式有所了解&#xff0c;这种二元分类的工作机制&#xff0c;进一步使用sigmoid()函数进行了平滑表达。相关学习链接为&#xff1a; 神经网络|(一)加权平均法&#xff0c;感知机和神经元-CSDN博客 神经网络|(二…...

deepseek R1 高效使用学习

直接提问 1、可以看到思考过程&#xff0c;可以当个学习工具 2、高效简介代码prompt <context> You are an expert programming AI assistant who prioritizes minimalist, efficient code. You plan before coding, write idiomatic solutions, seek clarification …...

STM32_SD卡的SDIO通信_基础读写

本篇将使用CubeMXKeil, 创建一个SD卡读写的工程。 目录 一、SD卡要点速读 二、SDIO要点速读 三、SD卡座接线原理图 四、CubeMX新建工程 五、CubeMX 生成 SD卡的SDIO通信部分 六、Keil 编辑工程代码 七、实验效果 实现效果&#xff0c;如下图&#xff1a; 一、SD卡 速读…...

【Docker】私有Docker仓库的搭建

一、准备工作 确保您的系统已安装Docker。如果没有安装&#xff0c;请参考Docker官方文档进行安装。 准备一个用于存储仓库数据的目录&#xff0c;例如/registry_data/。 二、拉取官方registry镜像 首先&#xff0c;我们需要从Docker Hub拉取官方的registry镜像。执行以下命…...

linux 管道符、重定向与环境变量

1. 输入输出重定向 在linux工作必须掌握的命令一文中&#xff0c;我们已经掌握了几乎所有基础常用的Linux命令&#xff0c;那么接下来的任务就是把多个命令适当的组合到一起&#xff0c;使其协同工作&#xff0c;会更高效的处理数据&#xff0c;做到这一点就必须搞清楚命令的输…...

Ansible fetch模块详解:轻松从远程主机抓取文件

在自动化运维的过程中&#xff0c;我们经常需要从远程主机下载文件到本地&#xff0c;以便进行分析或备份。Ansible的fetch模块正是为了满足这一需求而设计的&#xff0c;它可以帮助我们轻松地从远程主机获取文件&#xff0c;并将其保存到本地指定的位置。在这篇文章中&#xf…...

wireshark工具简介

目录 1 wireshark介绍 2 wireshark抓包流程 2.1 选择网卡 2.2 停止抓包 2.3 保存数据 3 wireshark过滤器设置 3.1 显示过滤器的设置 3.2 抓包过滤器 4 wireshark的封包列表与封包详情 4.1 封包列表 4.2 封包详情 参考文献 1 wireshark介绍 wireshark是非常流行的网络…...

51单片机——按键控制LED流水灯

引言 在电子制作和嵌入式系统学习中&#xff0c;51 单片机是一个经典且入门级的选择。按键控制 LED 流水灯是 51 单片机的一个基础应用&#xff0c;通过这个实例&#xff0c;我们可以深入了解单片机的输入输出控制原理。 51 单片机简介 51 单片机是对所有兼容 Intel 8051 指…...

【opencv】第9章 直方图与匹配

第9章 直方图与匹配 9.1 图像直方图概述 直方图广泛运用于很多计算机视觉运用当中&#xff0c;通过标记帧与帧之间显著的边 缘和颜色的统计变化&#xff0c;来检测视频中场景的变化。在每个兴趣点设置一个有相近 特征的直方图所构成“标签”,用以确定图像中的兴趣点。边缘、色…...

HTML5 Web Worker 的使用与实践

引言 在现代 Web 开发中&#xff0c;用户体验是至关重要的。如果页面在执行复杂计算或处理大量数据时变得卡顿或无响应&#xff0c;用户很可能会流失。HTML5 引入了 Web Worker&#xff0c;它允许我们在后台运行 JavaScript 代码&#xff0c;从而避免阻塞主线程&#xff0c;保…...

MVCC底层原理实现

MVCC的实现原理 了解实现原理之前&#xff0c;先理解下面几个组件的内容 1、 当前读和快照读 先普及一下什么是当前读和快照读。 当前读&#xff1a;读取数据的最新版本&#xff0c;并对数据进行加锁。 例如&#xff1a;insert、update、delete、select for update、 sele…...

基于ESP32-IDF驱动GPIO输出控制LED

基于ESP32-IDF驱动GPIO输出控制LED 文章目录 基于ESP32-IDF驱动GPIO输出控制LED一、点亮LED3.1 LED电路3.2 配置GPIO函数gpio_config()原型和头文件3.3 设置GPIO引脚电平状态函数gpio_set_level()原型和头文件3.4 代码实现并编译烧录 一、点亮LED 3.1 LED电路 可以看到&#x…...

【优选算法】9----长度最小的子数组

----------------------------------------begin-------------------------------------- 铁子们&#xff0c;前面的双指针算法篇就算告一段落啦~ 接下来是我们的滑动窗口篇&#xff0c;不过有一说一&#xff0c;算法题就跟数学题一样&#xff0c;只要掌握方法&#xff0c;多做…...

LabVIEW太阳能照明监控系统

在公共照明领域&#xff0c;传统的电力照明系统存在高能耗和维护不便等问题。利用LabVIEW开发太阳能照明监控系统&#xff0c;通过智能控制和实时监测&#xff0c;提高能源利用效率&#xff0c;降低维护成本&#xff0c;实现照明系统的可持续发展。 ​ 项目背景 随着能源危机…...

MongoDB中单对象大小超16M的存储方案

在 MongoDB 中&#xff0c;单个文档的大小限制为 16MB。如果某个对象&#xff08;文档&#xff09;的大小超过 16MB&#xff0c;可以通过以下几种方案解决&#xff1a; 1. 使用 GridFS 适用场景&#xff1a;需要存储大文件&#xff08;如图像、视频、文档等&#xff09;。 原…...

三维激光扫描-用智能检测系统提升效率

当下&#xff0c;企业对生产效率和质量控制的要求越来越高。传统的检测方法往往难以满足高精度、快速响应的需求。三维激光扫描技术结合智能检测系统&#xff0c;为工业检测带来了革命性的变革。 传统检测方法的局限性 传统检测方法主要依赖于人工测量和机械检测工具&#xf…...

css遇到的一些问题

1.vw单位&#xff0c;在PC端vw单位是包含右侧滚轮的宽度&#xff0c;而在移动端不会包含滚轮的长度&#xff0c;在PC端运用vw单位进行居中对齐&#xff0c;会比实际偏左盒子偏右一点&#xff0c;因为内容区域并不包含滚轮。 2.运用媒体查询进行响应式布局式&#xff0c;媒体查询…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

SpringTask-03.入门案例

一.入门案例 启动类&#xff1a; package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

安卓基础(Java 和 Gradle 版本)

1. 设置项目的 JDK 版本 方法1&#xff1a;通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分&#xff0c;设置 Gradle JDK 方法2&#xff1a;通过 Settings File → Settings... (或 CtrlAltS)…...

Python竞赛环境搭建全攻略

Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型&#xff08;算法、数据分析、机器学习等&#xff09;不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...

若依登录用户名和密码加密

/*** 获取公钥&#xff1a;前端用来密码加密* return*/GetMapping("/getPublicKey")public RSAUtil.RSAKeyPair getPublicKey() {return RSAUtil.rsaKeyPair();}新建RSAUti.Java package com.ruoyi.common.utils;import org.apache.commons.codec.binary.Base64; im…...

13.10 LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析

LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析 LanguageMentor 对话式训练系统架构与实现 关键词:多轮对话系统设计、场景化提示工程、情感识别优化、LangGraph 状态管理、Ollama 私有化部署 1. 对话训练系统技术架构 采用四层架构实现高扩展性的对话训练…...

作为点的对象CenterNet论文阅读

摘要 检测器将图像中的物体表示为轴对齐的边界框。大多数成功的目标检测方法都会枚举几乎完整的潜在目标位置列表&#xff0c;并对每一个位置进行分类。这种做法既浪费又低效&#xff0c;并且需要额外的后处理。在本文中&#xff0c;我们采取了不同的方法。我们将物体建模为单…...

智能体革命:企业如何构建自主决策的AI代理?

OpenAI智能代理构建实用指南详解 随着大型语言模型&#xff08;LLM&#xff09;在推理、多模态理解和工具调用能力上的进步&#xff0c;智能代理&#xff08;Agents&#xff09;成为自动化领域的新突破。与传统软件仅帮助用户自动化流程不同&#xff0c;智能代理能够自主执行工…...

汇编语言学习(三)——DoxBox中debug的使用

目录 一、安装DoxBox&#xff0c;并下载汇编工具&#xff08;MASM文件&#xff09; 二、debug是什么 三、debug中的命令 一、安装DoxBox&#xff0c;并下载汇编工具&#xff08;MASM文件&#xff09; 链接&#xff1a; https://pan.baidu.com/s/1IbyJj-JIkl_oMOJmkKiaGQ?pw…...