python3+TensorFlow 2.x(二) 回归模型
目录
回归算法
1、线性回归 (Linear Regression)
一元线性回归举例
2、非线性回归
3、回归分类
回归算法
回归算法用于预测连续的数值输出。回归分析的目标是建立一个模型,以便根据输入特征预测目标变量,在使用 TensorFlow 2.x 实现线性回归模型时,通常的步骤包括数据预处理、模型构建、训练和评估。
1、线性回归 (Linear Regression)
概述:线性回归是最基本的回归算法之一,假设目标变量与输入特征之间存在线性关系。
模型形式:y=+
+...+
+ϵ,其中 y 是目标变量,x 是特征,βi是权重,ϵ 是误差项。
一元线性回归举例
实现步骤:
导入必要的库。
生成或加载数据预处理:使用生成的线性数据集。生成了一个简单的线性关系 y = 2x + 1,并加上了一些噪声来模拟实际的观测数据。np.linspace 生成 100 个从 0 到 10 的点,np.random.normal 用于生成随机噪声。数据处理:使用 X.reshape(-1, 1) 将 X 变成二维数组,以适应 TensorFlow 的输入要求。
构建线性回归模型:使用 tf.keras.Sequential 创建一个简单的线性模型。只使用一个 Dense 层来表示线性回归,其中 input_dim=1 指明输入特征的维度为 1,output_dim=1 表示输出只有一个预测值。
编译模型:设置损失函数和优化器。使用了 adam 优化器,这是一个常用且效果不错的优化器。损失函数选择 mean_squared_error,这是回归问题中常见的损失函数。
训练模型:使用训练数据来训练模型。model.fit 方法用于训练模型。设置了 200 个 epoch 和10 的批次大小。
评估模型:通过测试数据评估模型性能。model.evaluate 会返回训练集的损失值,用来评估训练过程中的效果.
预测结果:使用训练好的模型进行预测。使用 matplotlib 绘制训练过程中每个 epoch 的损失变化情况,以便观察模型训练的收敛过程,使用 model.predict 来预测训练集上的输出,然后将预测结果与真实数据一起绘制出来,查看模型的拟合效果
import numpy as np
import tensorflow as tf
from tensorflow import keras
import matplotlib.pyplot as plt# 1. 生成数据:y = 2x + 1
np.random.seed(42)
X = np.linspace(0, 10, 100) # 生成100个点,范围是[0, 10]
Y = 2 * X + 1 + np.random.normal(0, 1, X.shape[0]) # y = 2x + 1,加上一些噪声# 2. 数据预处理:将数据转化为TensorFlow的张量(也可以直接使用NumPy数组)
X_train = X.reshape(-1, 1) # 特征,转换成二维数组
Y_train = Y.reshape(-1, 1) # 标签,转换成二维数组# 3. 构建线性回归模型
model = keras.Sequential([keras.layers.Dense(1, input_dim=1) # 只有一个输入特征,输出一个值
])# 4. 编译模型:选择损失函数和优化器
model.compile(optimizer='adam', loss='mean_squared_error')# 5. 训练模型
history = model.fit(X_train, Y_train, epochs=200, batch_size=10, verbose=0)# 6. 评估模型
loss = model.evaluate(X_train, Y_train)
print(f"Final training loss: {loss}")# 7. 绘制训练过程中的损失变化
plt.plot(history.history['loss'])
plt.title('Training Loss Over Epochs')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.show()# 8. 预测结果
Y_pred = model.predict(X_train)# 9. 可视化真实数据和预测结果
plt.scatter(X_train, Y_train, color='blue', label='Actual Data')
plt.plot(X_train, Y_pred, color='red', label='Predicted Line')
plt.title('Linear Regression with TensorFlow 2')
plt.xlabel('X')
plt.ylabel('Y')
plt.legend()
plt.show()
2、非线性回归
创建合成数据集:使用 NumPy 生成从 -3 到 3 的 100 个点,并计算对应的 y 值为sin(x) 加上一些噪声。
划分训练集和测试集:使用 train_test_split 将数据集划分为训练集和测试集,比例为 80% 训练,20% 测试。
构建曲线拟合模型:使用 tf.keras.Sequential 创建一个简单的神经网络模型,包含两个隐藏层,每层有 64 个神经元,激活函数为 ReLU,最后一层为输出层。
编译模型:使用 Adam 优化器和均方误差损失函数编译模型。
训练模型:使用 fit 方法训练模型,设置训练轮数为 200,批次大小为 10。
进行预测:使用 predict 方法对测试集进行预测。可视化预测结果,使用 Matplotlib 绘制实际值和预测值的散点图。
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split# 1. 创建合成数据集
np.random.seed(0)
X = np.linspace(-3, 3, 100) # 生成从-3到3的100个点
y = np.sin(X) + np.random.normal(0, 0.1, X.shape) # y = sin(x) + 噪声# 2. 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 3. 构建曲线拟合模型
# 将输入数据转换为二维数组
X_train = X_train.reshape(-1, 1)
X_test = X_test.reshape(-1, 1)model = tf.keras.Sequential([tf.keras.layers.Dense(64, activation='relu', input_shape=(1,)), # 隐藏层tf.keras.layers.Dense(64, activation='relu'), # 隐藏层tf.keras.layers.Dense(1) # 输出层
])# 4. 编译模型
model.compile(optimizer='adam', loss='mean_squared_error')# 5. 训练模型
model.fit(X_train, y_train, epochs=200, batch_size=10, verbose=0)# 6. 进行预测
predictions = model.predict(X_test)# 7. 可视化预测结果
plt.figure(figsize=(10, 6))
plt.scatter(X_test, y_test, color='blue', label='Actual Values') # 实际值
plt.scatter(X_test, predictions, color='red', label='Predicted Values') # 预测值
plt.title('Curve Fitting Regression')
plt.xlabel('X')
plt.ylabel('y')
plt.legend()
plt.grid()
plt.show()
3、回归分类
import numpy as np
import tensorflow as tf
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_classification, make_regression
import matplotlib.pyplot as plt# 生成回归数据集
X_reg, y_reg = make_regression(n_samples=1000, n_features=1, noise=10, random_state=42)# 生成分类数据集
X_class, y_class = make_classification(n_samples=1000, n_features=2, n_informative=2, n_redundant=0, n_clusters_per_class=1, random_state=42)# 划分训练集和测试集
X_reg_train, X_reg_test, y_reg_train, y_reg_test = train_test_split(X_reg, y_reg, test_size=0.2, random_state=42)
X_class_train, X_class_test, y_class_train, y_class_test = train_test_split(X_class, y_class, test_size=0.2, random_state=42)# 创建线性回归模型
model_reg = tf.keras.Sequential([tf.keras.layers.Dense(1, input_shape=(1,)) # 输入特征为 1,输出为 1
])# 编译模型
model_reg.compile(optimizer='adam', loss='mean_squared_error')# 训练模型
model_reg.fit(X_reg_train, y_reg_train, epochs=100, batch_size=32, verbose=1)# 评估模型
loss_reg = model_reg.evaluate(X_reg_test, y_reg_test, verbose=0)
print(f'回归模型测试集损失: {loss_reg:.4f}')# 可视化回归结果
plt.scatter(X_reg, y_reg, color='blue', label='Data points')
plt.scatter(X_reg_test, model_reg.predict(X_reg_test), color='red', label='Predictions')
plt.title('Linear Regression Results')
plt.xlabel('Feature')
plt.ylabel('Target')
plt.legend()
plt.show()# 创建逻辑回归模型
model_class = tf.keras.Sequential([tf.keras.layers.Dense(1, activation='sigmoid', input_shape=(2,)) # 输入特征为 2,输出为 1
])# 编译模型
model_class.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])# 训练模型
model_class.fit(X_class_train, y_class_train, epochs=100, batch_size=32, verbose=1)# 评估模型
loss_class, accuracy_class = model_class.evaluate(X_class_test, y_class_test, verbose=0)
print(f'分类模型测试集损失: {loss_class:.4f}, 测试集准确率: {accuracy_class:.4f}')# 可视化分类数据点
plt.scatter(X_class_train[y_class_train == 0][:, 0], X_class_train[y_class_train == 0][:, 1], color='blue', label='Class 0', alpha=0.5)
plt.scatter(X_class_train[y_class_train == 1][:, 0], X_class_train[y_class_train == 1][:, 1], color='red', label='Class 1', alpha=0.5)# 绘制决策边界
x_min, x_max = X_class[:, 0].min() - 1, X_class[:, 0].max() + 1
y_min, y_max = X_class[:, 1].min() - 1, X_class[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.01), np.arange(y_min, y_max, 0.01))
Z = model_class.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)plt.contourf(xx, yy, Z, levels=[0, 0.5, 1], alpha=0.2, colors=['blue', 'red'])
plt.title('Logistic Regression Decision Boundary')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.legend()
plt.show()
make_classification 是 sklearn.datasets 模块中的一个函数,用于生成用于分类的合成数据集。可以通过不同的参数来控制生成数据的特性。
参数解释:n_samples: 生成的样本数量。
n_features: 特征的总数。设置为 2,表示每个样本有 2 个特征。
n_informative: 有效特征的数量,这些特征对分类任务有贡献。设置为 2,表示所有特征都是有效特征。
n_redundant: 冗余特征的数量,这些特征是通过线性组合生成的有效特征。设置为 0,表示没有冗余特征。
n_clusters_per_class: 每个类别的聚类数量。设置为 1,表示每个类别只有一个聚类。
random_state: 随机种子,用于确保结果的可重复性。设置为 42。
make_regression 是 sklearn.datasets 模块中的一个函数,用于生成用于回归的合成数据集。
参数解释:n_samples: 生成的样本数量。
n_features: 特征的总数。比如设置为 1,表示每个样本有 1 个特征。
n_informative: 有效特征的数量,这些特征对目标变量有贡献。比如设置为 1,表示所有特征都是有效特征。
n_targets: 目标变量的数量。默认值为 1,表示生成一个目标变量。
bias: 截距项,表示模型的偏置。可以设置为一个常数,比如 0。
noise: 添加到输出中的噪声的标准差。可以设置为一个浮点数,如 0.1表示添加一定的随机噪声。
random_state: 随机种子,用于确保结果的可重复性。可以设置为一个整数,比如 42。
相关文章:

python3+TensorFlow 2.x(二) 回归模型
目录 回归算法 1、线性回归 (Linear Regression) 一元线性回归举例 2、非线性回归 3、回归分类 回归算法 回归算法用于预测连续的数值输出。回归分析的目标是建立一个模型,以便根据输入特征预测目标变量,在使用 TensorFlow 2.x 实现线性回归模型时&…...

机器人抓取与操作概述(深蓝)——1
工业机器人:① “臂”的形态 ② “手”的形态 ③ 视觉,力和触觉 1 机器人的不同形态 “臂”的形态 “手”的形态 2 常见的操作任务 操作:插入、推和滑 抓取:两指(平行夹爪)抓取、灵巧手抓取 落地-产…...

简单聊聊“DeepSeek”
目录 DeepSeek一夜火爆并受到广泛关注的优势 技术实力与创新 低成本与高效率 开源与免费 市场策略与应用领域 团队与资金优势 行业认可与媒体关注 DeepSeek在推理效率上的特别之处 多头潜在注意力(MLA) 多词元预测(MTP)…...
使用 Docker + Nginx + Certbot 实现自动化管理 SSL 证书
使用 Docker Nginx Certbot 实现自动化管理 SSL 证书 在互联网安全环境日益重要的今天,为站点或应用部署 HTTPS 已经成为一种常态。然而,手动申请并续期证书既繁琐又容易出错。本文将以 Nginx Certbot 为示例,基于 Docker 容器来搭建一个…...

粒子群算法 笔记 数学建模
引入: 如何找到全局最大值:如果只是贪心的话,容易被局部最大解锁定 方法有:盲目搜索,启发式搜索 盲目搜索:枚举法和蒙特卡洛模拟,但是样例太多花费巨量时间 所以启发式算法就来了,通过经验和规…...

【C语言】结构体与共用体深入解析
在C语言中,结构体(struct)和共用体(union)都是用来存储不同类型数据的复合数据类型,它们在程序设计中具有重要的作用。 推荐阅读:操作符详细解说,让你的编程技能更上一层楼 1. 结构体…...
es6.7.1分词器ik插件安装-和head插件连接es特殊配置
es6.7.1分词器ik插件安装-和head插件连接es特殊配置 如果对运维课程感兴趣,可以在b站上、A站或csdn上搜索我的账号: 运维实战课程,可以关注我,学习更多免费的运维实战技术视频 1.查看es6.7.1和es-head安装位置和es插件路径 [ro…...

java求职学习day18
常用的设计原则和设计模式 1 常用的设计原则(记住) 1.1 软件开发的流程 需求分析文档、概要设计文档、详细设计文档、编码和测试、安装和调试、维护和升级 1.2 常用的设计原则 (1)开闭原则(Open Close Principle…...
单链表专题(上)
链表的定义与创建 线性表: 1. 物理结构上不一定是线性的 2. 逻辑结构上一定是线性的 链表是一种物理存储结构上非连续,非顺序的存储结构 链表也是线性表的一种,但是在物理结构上不是连续的 链表是由一个一个的节点组成,需要数…...

【stm32学习】STM32F103相关特性
| 名称 | 缩写 | 频率 | 外部连接 | 功能 | 用途 | 特性 | |--------------------|------|----------------|---------------|------------|--------------|----------------| | 外部高速晶体振荡器 | HSE | 4~16MHz …...

PostGIS笔记:PostgreSQL中表、键和索引的基础操作
创建、查看与删除表 在数据库中创建一个表,使用如下代码: create table streets (id serial not null primary key, name varchar(50));这里的表名是streets,id是主键所以非空,采用serial数据类型,这个数据类型会自动…...

蓝桥杯python语言基础(3)——循环结构
一、for语句 理解range函数 range(start, stop, step) start: 序列开始的数字(默认为0)。stop: 序列结束的数字(不包含stop)。step: 步长(默认为1)。 练习 输出在 l 和 r 之间的所有偶数: pri…...

微服务网关鉴权之sa-token
目录 前言 项目描述 使用技术 项目结构 要点 实现 前期准备 依赖准备 统一依赖版本 模块依赖 配置文件准备 登录准备 网关配置token解析拦截器 网关集成sa-token 配置sa-token接口鉴权 配置satoken权限、角色获取 通用模块配置用户拦截器 api模块配置feign…...

23【进制的理解】
很多人可能听过计算机的最底层是2进制执行,但是原理并不知道,我们今天先不讨论那么复杂的问题,先讨论什么是进制 1910,10并不是1个字符,而是2个字符,也就是说在10进制里面没有“10”这个字符,1…...

jemalloc 5.3.0的tsd模块的源码分析
一、背景 在主流的内存库里,jemalloc作为android 5.0-android 10.0的默认分配器肯定占用了非常重要的一席之地。jemalloc的低版本和高版本之间的差异特别大,低版本的诸多网上整理的总结,无论是在概念上和还是在结构体命名上在新版本中很多都…...

【Convex Optimization Stanford】Lec3 Function
【Convex Optimization Stanford】Lec3 Function 前言凸函数的定义对凸函数在一条线上的限制增值扩充? 一阶条件二阶条件一些一阶/二阶条件的例子象集和sublevel set关于函数凸性的扩展(Jesen Inequality)保持函数凸性的操作非负加权和 & 仿射函数的…...

深入 Rollup:从入门到精通(三)Rollup CLI命令行实战
准备阶段:初始化项目 初始化项目,这里使用的是pnpm,也可以使用yarn或者npm # npm npm init -y # yarn yarn init -y # pnpm pnpm init安装rollup # npm npm install rollup -D # yarn yarn add rollup -D # pnpm pnpm install rollup -D在…...

wangEditor富文本编辑器,Laravel上传图片配置和使用
文章目录 前言步骤1. 构造好前端模版2. 搭建后端存储3. 调试 前言 由于最近写项目需要使用富文本编辑器,使用的是VUE3.0版本所以很多不兼容,实际测试以后推荐使用wangEditor 步骤 构造好前端模版搭建后端存储调试 1. 构造好前端模版 安装模版 模版安…...
chrome源码剖析—进程通信
Chrome 浏览器采用多进程架构(multi-process architecture),这种架构使得每个浏览器标签、扩展、插件、GPU 渲染等都在独立的进程中运行。为了确保不同进程之间的高效通信,Chrome 使用 进程间通信(IPC, Inter-Process …...
JJJ:linux时间子系统相关术语
文章目录 墙上时间内核管理的各种时间无时钟滴答模式(tickless mode 或 no-tick mode)简要介绍具体实现动态时钟滴答 Dynamic Ticks完全无时钟滴答(Full Tickless) nohz sleep单触发模式 oneshot mode 墙上时间 真实世界的真实时…...

前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

ios苹果系统,js 滑动屏幕、锚定无效
现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...

MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

群晖NAS如何在虚拟机创建飞牛NAS
套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...
SQL Server 触发器调用存储过程实现发送 HTTP 请求
文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...