当前位置: 首页 > news >正文

06-机器学习-数据预处理

数据清洗

数据清洗是数据预处理的核心步骤,旨在修正或移除数据集中的错误、不完整、重复或不一致的部分,为后续分析和建模提供可靠基础。以下是数据清洗的详细流程、方法和实战示例:


一、数据清洗的核心任务

问题类型表现示例影响
缺失值数值型字段为空(NaN)模型无法处理缺失值,导致训练中断或偏差
异常值年龄=200岁,房价=-100万扭曲统计指标(如均值),降低模型泛化性
重复数据两行记录完全相同导致模型过拟合,降低数据代表性
不一致数据日期格式混乱(2023-09-01 vs 01/09/23)解析错误,特征提取失败

二、数据清洗流程与工具

1. 缺失值处理
  • 检测缺失值

    # 统计每列缺失比例
    missing_ratio = data.isnull().mean() * 100
    print(missing_ratio.sort_values(ascending=False))
    
  • 处理方法

    方法适用场景代码示例
    直接删除缺失比例高(>80%)或无关字段data.dropna(axis=1, thresh=len(data)*0.2)
    均值/中位数填充数值型字段,缺失随机分布data['age'].fillna(data['age'].median(), inplace=True)
    众数填充类别型字段data['gender'].fillna(data['gender'].mode()[0], inplace=True)
    插值法时间序列数据(如温度记录)data['temperature'].interpolate(method='time', inplace=True)
    模型预测填充复杂场景(如多变量关联缺失)使用KNN或随机森林预测缺失值(见下方代码)

    KNN填充示例

    from sklearn.impute import KNNImputer
    imputer = KNNImputer(n_neighbors=5)
    data_filled = pd.DataFrame(imputer.fit_transform(data), columns=data.columns)
    

2. 异常值处理
  • 检测方法

    • 描述性统计:检查最小/最大值是否合理
      print(data.describe())
      
    • 箱线图(Boxplot)
      plt.figure(figsize=(8,4))
      sns.boxplot(x=data['income'])
      plt.title("Income Distribution")
      plt.show()
      
    • Z-Score法(正态分布数据):
      z_scores = (data['value'] - data['value'].mean()) / data['value'].std()
      outliers = data[abs(z_scores) > 3]  # Z>3为异常
      
    • IQR法(非正态分布数据):
      Q1 = data['age'].quantile(0.25)
      Q3 = data['age'].quantile(0.75)
      IQR = Q3 - Q1
      lower_bound = Q1 - 1.5 * IQR
      upper_bound = Q3 + 1.5 * IQR
      
  • 处理方法

    方法代码示例
    删除异常值data = data[(data['age'] >= 0) & (data['age'] <= 100)]
    截断(Winsorize)from scipy.stats.mstats import winsorize<br>data['income'] = winsorize(data['income'], limits=[0.05, 0.05])
    分箱(Binning)data['age_bin'] = pd.cut(data['age'], bins=[0,18,35,60,100])

3. 重复数据处理
  • 检测与删除

    # 检测完全重复的行
    duplicates = data.duplicated()
    print(f"重复行数量: {duplicates.sum()}")# 删除重复行(保留第一个出现值)
    data.drop_duplicates(keep='first', inplace=True)
    
  • 部分重复处理(如用户ID重复但信息不同):

    # 按关键字段去重(如用户ID)
    data.drop_duplicates(subset=['user_id'], keep='last', inplace=True)
    

4. 不一致数据修正
  • 格式统一

    # 日期格式标准化
    data['date'] = pd.to_datetime(data['date'], format='mixed')# 文本大小写统一
    data['category'] = data['category'].str.lower()# 单位统一(如货币转换)
    data['price'] = data['price'].apply(lambda x: x * 6.5 if 'USD' in x else x
    )
    
  • 逻辑校验

    # 检查年龄与出生日期是否一致
    current_year = pd.Timestamp.now().year
    data['calculated_age'] = current_year - data['birth_year']
    invalid_age = data[abs(data['age'] - data['calculated_age']) > 1]
    

三、实战案例:电商订单数据清洗

原始数据问题
import pandas as pd
data = pd.DataFrame({'order_id': [101, 102, 103, 104, 105, 106],'user_id': [1, 2, 2, 3, 4, None],'price': [29.9, 199.0, 199.0, -50.0, 89.9, 120.0],'order_date': ['2023-09-01', '01/09/2023', '2023-09-01', '2023-10-32', None, '2023-09-05']
})
清洗步骤
  1. 处理缺失值

    # 填充user_id缺失值(假设新用户ID为999)
    data['user_id'].fillna(999, inplace=True)# 删除order_date缺失的行
    data.dropna(subset=['order_date'], inplace=True)
    
  2. 修正异常价格

    # 删除价格为负的订单
    data = data[data['price'] > 0]# 截断价格超过200的订单(假设业务上限为200)
    data['price'] = data['price'].clip(upper=200)
    
  3. 标准化日期格式

    # 转换日期并过滤无效日期(如2023-10-32)
    data['order_date'] = pd.to_datetime(data['order_date'], errors='coerce')
    data.dropna(subset=['order_date'], inplace=True)
    
  4. 去重

    # 按user_id和order_date去重(保留最后一条)
    data.drop_duplicates(subset=['user_id', 'order_date'], keep='last', inplace=True)
    
清洗后数据
order_iduser_idpriceorder_date
101129.92023-09-01
1022199.02023-09-01
105489.9NaT(已删除)
106999120.02023-09-05

四、注意事项

  1. 避免过度清洗:保留合理的数据多样性(如正常的价格波动)。
  2. 记录清洗日志:跟踪每一步操作的影响(如删除了多少行数据)。
  3. 业务规则优先:与领域专家确认异常定义(如“用户年龄>100是否合理”)。
  4. 自动化流水线:对持续更新的数据,使用Pipeline封装清洗步骤:
    from sklearn.pipeline import Pipelineclean_pipeline = Pipeline([('fill_na', SimpleImputer(strategy='constant', fill_value=999)),('remove_duplicates', DropDuplicates(subset=['user_id'])),('clip_outliers', ColumnTransformer([('clip', FunctionTransformer(lambda x: x.clip(0, 200)), ['price'])])),
    ])
    

数据变换

以下是对数据变换的更紧凑、更细节化的总结,突出核心要点与实用技巧:


一、标准化/归一化:核心差异

方法公式适用场景异常值敏感度Scikit-learn工具
Z-score z = x − μ σ z = \frac{x - \mu}{\sigma} z=σxμ数据近似正态分布,线性模型(SVM、回归)StandardScaler
Min-Max x ′ = x − x min ⁡ x max ⁡ − x min ⁡ x' = \frac{x - x_{\min}}{x_{\max} - x_{\min}} x=xmaxxminxxmin图像像素、神经网络输入层MinMaxScaler
Robust x ′ = x − median I Q R x' = \frac{x - \text{median}}{IQR} x=IQRxmedian存在异常值,非正态分布RobustScaler

关键技巧

  • 树模型(如随机森林、XGBoost)无需标准化,但对特征组合敏感的模型(FM、NN)需要。
  • 归一化到[-1,1]可能对某些激活函数(如tanh)更友好。

二、非线性变换:快速选择

  1. 对数变换:右偏数据(如收入),用np.log1p避免零值。
  2. Box-Cox变换:需数据严格为正,自动优化λ值(scipy.stats.boxcox)。
  3. 分位数变换:强制数据服从均匀/正态分布(QuantileTransformer)。

示例代码

from sklearn.preprocessing import PowerTransformer
pt = PowerTransformer(method='yeo-johnson')  # 兼容零/负值
X_transformed = pt.fit_transform(X)

三、分类变量编码:场景化方案

方法优点缺点适用模型
One-Hot无顺序假设,兼容所有模型高维稀疏,需处理共线性线性模型、神经网络
Target编码保留类别与目标的关系需防过拟合(如交叉验证)树模型、高基数类别
Embedding低维稠密,捕捉语义相似性需预训练或端到端学习深度学习(NLP/推荐系统)

关键点

  • 高基数类别优先用Target EncodingCatBoost内置处理。
  • 树模型可尝试Label Encoding,但需验证类别顺序是否合理。

四、特征工程:高效操作

  1. 数值特征
    • 交叉特征:加减乘除(如电商中“单价×购买量=总金额”)。
    • 分箱:等频分箱(pd.qcut)或等宽分箱(pd.cut),捕捉非线性。
  2. 时间特征
    • 提取周期性(星期、月份),滑动窗口统计(均值、标准差)。
  3. 文本特征
    • 短文本用TF-IDF,长文本用BERT嵌入,高维稀疏时用TruncatedSVD降维。

代码示例

# 时间特征处理
df['hour'] = df['timestamp'].dt.hour
df['is_weekend'] = df['timestamp'].dt.weekday >= 5

五、降维:选择策略

方法核心思想适用场景注意事项
PCA线性投影最大化方差高维数据可视化/去噪需先标准化,可能丢失非线性信息
t-SNE非线性保留局部结构可视化高维聚类计算代价高,不用于特征输入
UMAP平衡速度与局部/全局结构大规模数据可视化/预处理参数敏感,需调参

经验

  • 输入特征>50时优先用PCA,保留95%方差(n_components=0.95)。
  • 避免对树模型使用降维,可能破坏特征重要性。

六、避坑指南

  1. 数据泄露
    • 所有变换必须仅用训练集统计量!用Pipeline确保流程:
      from sklearn.pipeline import make_pipeline
      pipe = make_pipeline(StandardScaler(), SVM())
      pipe.fit(X_train, y_train)
      
  2. 异常值处理
    • 缩尾处理(np.clip)或中位数填充,避免破坏分布。
  3. 评估验证
    • 对KNN、SVM等敏感模型,对比不同缩放方法的分类边界(如决策边界图)。

七、端到端流程

  1. 输入检查:分布(直方图/Q-Q图)、缺失值、异常值。
  2. 数值特征:缩放→非线性变换→分箱。
  3. 分类特征:编码→嵌入(可选)。
  4. 特征构造:领域知识驱动交叉/聚合。
  5. 输出验证:模型在验证集的表现波动是否<5%。

总结:数据变换需与模型特性深度耦合,通过实验迭代优化。记住:“Garbage in, garbage out”——宁可花80%时间在数据准备,而非调参!


特征工程

特征工程:从原始数据到模型燃料的核心技术

特征工程是机器学习的“炼金术”,旨在将原始数据转化为模型可理解的强特征,直接影响模型性能上限。以下是结构化拆解:


一、核心目标与价值
  • 目标:构造高信息量、低冗余、适配模型的特征。
  • 价值
    • 提升模型准确率(如添加用户历史行为统计特征)
    • 降低计算成本(通过降维/特征选择)
    • 增强可解释性(如分箱后的年龄组代替原始值)

二、特征构造:从原始数据中“挖掘金子”
  1. 时间特征

    • 基础字段:年、月、日、小时、星期几、是否节假日
    • 衍生特征:时间间隔(如上次购买距今的天数)、滑动窗口统计(过去7天均值)
    df['purchase_hour'] = df['timestamp'].dt.hour
    df['days_since_last_purchase'] = (current_date - df['last_purchase_date']).dt.days
    
  2. 交互特征(组合特征)

    • 数值交互:加减乘除(如“单价×数量=总价”)
    • 类别交叉:笛卡尔积(如“地区×产品类型”生成组合标签)
    df['price_per_sqmeter'] = df['total_price'] / df['area']
    
  3. 统计聚合特征

    • 单维度统计:用户历史购买金额的均值、最大值、方差
    • 跨表关联:订单表按用户ID聚合的订单数、退货率
    user_stats = orders.groupby('user_id')['amount'].agg(['mean', 'max'])
    
  4. 文本/图像特征

    • 文本:TF-IDF关键词权重、BERT句向量、情感分析得分
    • 图像:边缘特征、颜色直方图、预训练CNN提取的特征图

三、特征变换:提升模型适配性
  1. 分箱(Binning)

    • 等宽分箱:固定区间宽度(如年龄每10年一档)
    • 等频分箱:保证每箱样本量均衡
    • 模型分箱:使用决策树寻找最优分割点
    df['age_bin'] = pd.cut(df['age'], bins=[0,18,35,60,100], labels=['child', 'young', 'adult', 'senior'])
    
  2. 非线性变换

    • 对数变换:处理右偏分布(np.log1p避免零值)
    • Box-Cox变换:自动优化正态性(仅适用于正值)
    • 分位数变换:强制服从指定分布(如正态、均匀)
  3. 高基数类别处理

    • 目标编码(Target Encoding):用目标变量的统计量(如均值)代替类别
    • 频率编码:使用类别出现频率作为特征值
    • 嵌入编码(Embedding):通过神经网络学习低维表示(如Word2Vec)

四、特征选择:剔除噪声与冗余
方法原理适用场景
过滤法基于统计指标(如方差、卡方检验)快速初筛,计算成本低
包裹法通过模型性能迭代选择特征子集精确但计算代价高(递归特征消除)
嵌入法模型训练中自动选择(如L1正则化)与模型耦合,高效

实用技巧

  • 对树模型,直接使用feature_importances_筛选重要性>阈值特征
  • 对线性模型,结合Lasso回归的系数稀疏性做特征剔除

五、自动化特征工程工具
  1. FeatureTools:自动生成跨表聚合特征(如“用户最近3次登录时间标准差”)
  2. TSFresh:针对时间序列自动提取数百种统计特征(如自相关性、傅里叶变换系数)
  3. AutoFeat:自动构造多项式特征并进行显著性筛选
# FeatureTools示例
import featuretools as ft
es = ft.EntitySet()
es = es.entity_from_dataframe(entity_id='users', dataframe=users_df, index='user_id')
features, feature_defs = ft.dfs(entityset=es, target_entity='users')

六、避坑指南与最佳实践
  1. 避免数据泄露

    • 所有统计量(如Target Encoding的均值)必须仅从训练集计算!
    • 使用Pipeline封装预处理与模型训练:
      from sklearn.pipeline import Pipeline
      pipe = Pipeline([('encoder', TargetEncoder()), ('model', RandomForest())])
      
  2. 领域知识驱动

    • 在电商场景中,构造“商品价格与类目平均价格的比值”可能比单纯价格更有效
    • 在风控场景中,组合“申请时间与工作时段的重叠度”作为特征
  3. 迭代验证

    • 通过AB测试对比不同特征组合的模型性能
    • 监控特征稳定性(如PSI指标)防止线上数据分布偏移

七、终极心法
  • “Less is More”:优先构造10个强特征,而非100个弱特征。
  • “Think Like a Model”:理解模型如何利用特征(如线性模型依赖线性可分性,NN偏好稠密低维输入)。
  • “Data First, Algorithm Second”:特征工程提升的上限远高于调参!

总结:特征工程是融合领域知识、数据直觉与工程技巧的艺术。掌握核心方法后,需在业务场景中反复迭代,才能炼出“模型友好”的金牌特征。


相关文章:

06-机器学习-数据预处理

数据清洗 数据清洗是数据预处理的核心步骤&#xff0c;旨在修正或移除数据集中的错误、不完整、重复或不一致的部分&#xff0c;为后续分析和建模提供可靠基础。以下是数据清洗的详细流程、方法和实战示例&#xff1a; 一、数据清洗的核心任务 问题类型表现示例影响缺失值数值…...

电梯系统的UML文档12

5.2.1 DoorControl 的状态图 图 19: DoorControl 的状态图 5.2.2 DriveControl 的状态图 图 20: DriveControl 的状态图 5.2.3 LanternControl 的状态图 图 21: LanternControl 的状态图 5.2.4 HallButtonControl 的状态图 图 22: HallButtonControl 的状态图 5.2.5 CarB…...

萌新学 Python 之运算符

Python 中运算符包括&#xff1a;算术运算符、比较运算符、逻辑运算符、赋值运算符、位运算符、海象运算符 算术运算符&#xff1a;加 减 - 乘 * 除 / 取整 // 求余 % 求幂 ** 注意&#xff1a;取整时&#xff0c;一正一负整除&#xff0c;向下取整 比如 5 // …...

嵌入式知识点总结 Linux驱动 (五)-linux内核

针对于嵌入式软件杂乱的知识点总结起来&#xff0c;提供给读者学习复习对下述内容的强化。 目录 1.内核镜像格式有几种&#xff1f;分别有什么区别&#xff1f; 2.内核中申请内存有哪几个函数&#xff1f;有什么区别&#xff1f; 3.什么是内核空间&#xff0c;用户空间&…...

zabbix7 配置字体 解决中文乱码问题(随手记)

目录 问题网传的方法&#xff08;无效&#xff09;正确的修改方式步骤 问题 zabbix 最新数据 中&#xff0c;图标的中文显示不出。 网传的方法&#xff08;无效&#xff09; 网传有一个方法&#xff1a;上传字体文件到/usr/share/zabbix/assets/fonts&#xff1b;修改/usr/…...

预测不规则离散运动的下一个结构

有一个点在19*19的平面上运动&#xff0c;运动轨迹为 一共移动了90步&#xff0c;顺序为 y x y x y x 0 17 16 30 10 8 60 15 15 1 3 6 31 10 7 61 14 15 2 12 17 32 9 9 62 16 15 3 4 12 33 10 9 63 18 15 4 3 18 34 15 12 6…...

CTFSHOW-WEB入门-命令执行29-32

题目&#xff1a;web 29 题目&#xff1a;解题思路&#xff1a;分析代码&#xff1a; error_reporting(0); if(isset($_GET[c])){//get一个c的参数$c $_GET[c];//赋值给Cif(!preg_match("/flag/i", $c)){eval($c);//if C变量里面没有flag&#xff0c;那么就执行C…...

SQL Server 建立每日自动log备份的维护计划

SQLServer数据库可以使用维护计划完成数据库的自动备份&#xff0c;下面以在SQL Server 2012为例说明具体配置方法。 1.启动SQL Server Management Studio&#xff0c;在【对象资源管理器】窗格中选择数据库实例&#xff0c;然后依次选择【管理】→【维护计划】选项&#xff0…...

doris:HLL

HLL是用作模糊去重&#xff0c;在数据量大的情况性能优于 Count Distinct。HLL的导入需要结合hll_hash等函数来使用。更多文档参考HLL。 使用示例​ 第 1 步&#xff1a;准备数据​ 创建如下的 csv 文件&#xff1a;test_hll.csv 1001|koga 1002|nijg 1003|lojn 1004|lofn …...

双层Git管理项目,github托管显示正常

双层Git管理项目&#xff0c;github托管显示正常 背景 在写React项目时&#xff0c;使用Next.js,该项目默认由git托管。但是我有在项目代码外层记笔记的习惯&#xff0c;我就在外层使用了git托管。 目录如下 code 层内也有.git 文件&#xff0c;对其托管。 我没太在意&…...

准备知识——旋转机械的频率和振动基础

旋转频率&#xff0c;也称为转速或旋转速率&#xff08;符号ν&#xff0c;小写希腊字母nu&#xff0c;也作n&#xff09;&#xff0c;是物体绕轴旋转的频率。其国际单位制单位是秒的倒数(s −1 )&#xff1b;其他常见测量单位包括赫兹(Hz)、每秒周期数(cps) 和每分钟转数(rpm)…...

知识库管理驱动企业知识流动与工作协同创新模式

内容概要 知识库管理在现代企业中扮演着至关重要的角色&#xff0c;其价值不仅体现在知识的积累&#xff0c;还在于通过优质的信息流动促进协作与创新。有效的知识库能够将分散的信息整合为有序、易于访问的资源&#xff0c;为员工提供实时支持&#xff0c;进而提升整体工作效…...

CMake常用命令指南(CMakeList.txt)

CMakeList从入门到精通的文章有很多不再赘述&#xff08; 此处附带一篇优秀的博文链接&#xff1a;一个简单例子&#xff0c;完全入门CMake语法与CMakeList编写 &#xff09;。 本文主要列举 CMake 中常用命令的详细说明、优缺点分析以及推荐做法&#xff0c;以更好地理解和灵…...

【回溯+剪枝】找出所有子集的异或总和再求和 全排列Ⅱ

文章目录 1863. 找出所有子集的异或总和再求和解题思路&#xff1a;子集问题解法&#xff08;回溯 剪枝&#xff09;47. 全排列 II解题思路&#xff1a;排序 回溯 剪枝 1863. 找出所有子集的异或总和再求和 1863. 找出所有子集的异或总和再求和 一个数组的 异或总和 定义为…...

中国技术突破对国际格局的多维影响与回应

链接地址&#xff1a; https://download.csdn.net/download/wanggang130532/90323798https://download.csdn.net/download/wanggang130532/90323798...

【漫话机器学习系列】068.网格搜索(GridSearch)

网格搜索&#xff08;Grid Search&#xff09; 网格搜索&#xff08;Grid Search&#xff09;是一种用于优化机器学习模型超参数的技术。它通过系统地遍历给定的参数组合&#xff0c;找出使模型性能达到最优的参数配置。 网格搜索的核心思想 定义参数网格 创建一个包含超参数值…...

元宇宙下的Facebook:虚拟现实与社交的结合

随着科技的不断进步&#xff0c;虚拟现实&#xff08;VR&#xff09;技术逐渐从科幻走入现实&#xff0c;成为人们探索未来社交方式的重要工具。在这一浪潮中&#xff0c;Facebook&#xff08;现为Meta&#xff09;作为全球领先的社交平台&#xff0c;正在积极布局虚拟现实和元…...

记忆力训练day08

写作头脑风暴训练 1 集体的头脑风暴&#xff1a; 2 一个人的头脑风暴 没事&#xff0c;你说老师我还没有摸到门道&#xff0c;你去做&#xff0c;做的时候你就会知道什么叫做头脑风暴。记住&#xff0c;不要用脑子就在感觉里面&#xff0c;你究竟想给人呈现一种什么样的文章&am…...

崇州市街子古镇正月初一繁华剪影

今天是蛇年正月初一&#xff0c;下午笔者步出家门&#xff0c;逛到了崇州市街子古镇井水街&#xff0c;想看看景象如何。结果看到的是车水马龙、人流如织&#xff0c;繁花似锦&#xff0c;热闹非凡&#xff0c;原来今天开始预订此地摆下的长街宴。心里高兴&#xff0c;便用手机…...

websocket webworker教程及应用

WebSocket 和 Web Workers 是两种不同的 Web 技术&#xff0c;分别用于实现实时通信和后台线程处理。以下是它们的简要教程&#xff1a; WebSocket 教程 1. 什么是 WebSocket&#xff1f; WebSocket 是一种在单个 TCP 连接上进行全双工通信的协议。它允许服务器主动向客户端推…...

【后端】Flask

长期更新&#xff0c;建议关注收藏点赞&#xff01; 实例1 Jinja2 是 Flask 和 Django 使用的 模板引擎&#xff0c;它允许你在 HTML 中嵌入 Python 代码&#xff0c;以动态生成页面内容。Jinja2 语法类似于 Django 模板&#xff0c;并支持变量、条件判断、循环、过滤器等。 fr…...

【cran Archive R包的安装方式】

cran Archive R包的安装方式 添加链接描述 1.包被cran移除 2.包要求的R语言版本与你电脑上的版本不相符 ad archive包的网址或者是下载到工作目录下&#xff0c;ad等于文件名 install,packages(ad repos NULL)...

如何用matlab画一条蛇

文章目录 源代码运行结果代码说明结果 源代码 % 画蛇的代码 % 2025-01-28/Ver1 % 清空环境 clc; clear; close all;% 定义蛇的身体坐标 t linspace(0, 4*pi, 100); % 参数化变量 x t; % x坐标 y sin(t) 0.5 * sin(3*t); % y坐标&#xff0c;形成更复…...

Greenplum临时表未清除导致库龄过高处理

1.问题 Greenplum集群segment后台日志报错 2.回收库龄 master上执行 vacuumdb -F -d cxy vacuumdb -F -d template1 vacuumdb -F -d rptdb 3.回收完成后检查 仍然发现segment还是有库龄报警警告信息发出 4.检查 4.1 在master上检查库年龄 SELECT datname, datfrozen…...

【Linux】gdb——Linux调试器

gdb使用背景 程序的发布方式有两种&#xff0c;debug模式和release模式 Linux gcc/g出来的二进制程序&#xff0c;默认是release模式 要使用gdb调试&#xff0c;必须在源代码生成二进制程序的时候, 加上 -g 选项 gdb使用方法 首先进入gdb gdb test_glist显示代码 断点 b 行…...

C++ 中用于控制输出格式的操纵符——setw 、setfill、setprecision、fixed

目录 四种操纵符简要介绍 setprecision基本用法 setfill的基本用法 fixed的基本用法 setw基本用法 以下是一些常见的用法和示例&#xff1a; 1. 设置字段宽度和填充字符 2. 设置字段宽度和对齐方式 3. 设置字段宽度和精度 4. 设置字段宽度和填充字符&#xff0c;结合…...

C++ ——— 学习并使用 priority_queue 类

目录 何为 priority_queue 类 学习并使用 priority_queue 类 实例化一个 priority_queue 类对象 插入数据 遍历堆&#xff08;默认是大堆&#xff09; 通过改变实例化的模板参数修改为小堆 何为 priority_queue 类 priority_queue 类为 优先级队列&#xff0c;其本质就是…...

基础项目实战——3D赛车(c++)

目录 前言一、渲染引擎二、关闭事件三、梯形绘制四、轨道绘制五、边缘绘制六、草坪绘制七、前后移动八、左右移动​九、曲线轨道​十、课山坡轨道​十一、循环轨道​十二、背景展示​十三、引入速度​十四、物品绘制​十五、课数字路障​十六、分数展示​十七、重新生成​十八、…...

ODP(OBProxy)路由初探

OBProxy路由策略 Primary Zone 路由 官方声明默认情况&#xff0c;会将租户请求发送到租户的 primary zone 所在的机器上&#xff0c;通过 Primary Zone 路由可以尽量发往主副本&#xff0c;方便快速寻找 Leader 副本。另外&#xff0c;设置primary zone 也会在一定成都上减少…...

从零推导线性回归:最小二乘法与梯度下降的数学原理

​ 欢迎来到我的主页&#xff1a;【Echo-Nie】 本篇文章收录于专栏【机器学习】 本文所有内容相关代码都可在以下仓库中找到&#xff1a; Github-MachineLearning 1 线性回归 1.1 什么是线性回归 线性回归是一种用来预测和分析数据之间关系的工具。它的核心思想是找到一条直…...