当前位置: 首页 > news >正文

doris:HLL

HLL是用作模糊去重,在数据量大的情况性能优于 Count Distinct。HLL的导入需要结合hll_hash等函数来使用。更多文档参考HLL。

使用示例​

第 1 步:准备数据​

创建如下的 csv 文件:test_hll.csv

1001|koga
1002|nijg
1003|lojn
1004|lofn
1005|jfin
1006|kon
1007|nhga
1008|nfubg
1009|huang
1010|buag

第 2 步:在库中创建表​

CREATE TABLE testdb.test_hll(typ_id           BIGINT          NULL   COMMENT "ID",typ_name         VARCHAR(10)     NULL   COMMENT "NAME",pv               hll hll_union   NOT NULL   COMMENT "hll"
)
AGGREGATE KEY(typ_id,typ_name)
DISTRIBUTED BY HASH(typ_id) BUCKETS 10;

第 3 步:导入数据​

curl --location-trusted -u <doris_user>:<doris_password> \-H "column_separator:|" \-H "columns:typ_id,typ_name,pv=hll_hash(typ_id)" \-T test_hll.csv \-XPUT http://<fe_ip>:<fe_http_port>/api/testdb/test_hll/_stream_load

第 4 步:检查导入数据​

使用 hll_cardinality 进行查询:

mysql> select typ_id,typ_name,hll_cardinality(pv) from testdb.test_hll;
+--------+----------+---------------------+
| typ_id | typ_name | hll_cardinality(pv) |
+--------+----------+---------------------+
|   1010 | buag     |                   1 |
|   1002 | nijg     |                   1 |
|   1001 | koga     |                   1 |
|   1008 | nfubg    |                   1 |
|   1005 | jfin     |                   1 |
|   1009 | huang    |                   1 |
|   1004 | lofn     |                   1 |
|   1007 | nhga     |                   1 |
|   1003 | lojn     |                   1 |
|   1006 | kon      |                   1 |
+--------+----------+---------------------+
10 rows in set (0.06 sec)

相关文章:

doris:HLL

HLL是用作模糊去重&#xff0c;在数据量大的情况性能优于 Count Distinct。HLL的导入需要结合hll_hash等函数来使用。更多文档参考HLL。 使用示例​ 第 1 步&#xff1a;准备数据​ 创建如下的 csv 文件&#xff1a;test_hll.csv 1001|koga 1002|nijg 1003|lojn 1004|lofn …...

双层Git管理项目,github托管显示正常

双层Git管理项目&#xff0c;github托管显示正常 背景 在写React项目时&#xff0c;使用Next.js,该项目默认由git托管。但是我有在项目代码外层记笔记的习惯&#xff0c;我就在外层使用了git托管。 目录如下 code 层内也有.git 文件&#xff0c;对其托管。 我没太在意&…...

准备知识——旋转机械的频率和振动基础

旋转频率&#xff0c;也称为转速或旋转速率&#xff08;符号ν&#xff0c;小写希腊字母nu&#xff0c;也作n&#xff09;&#xff0c;是物体绕轴旋转的频率。其国际单位制单位是秒的倒数(s −1 )&#xff1b;其他常见测量单位包括赫兹(Hz)、每秒周期数(cps) 和每分钟转数(rpm)…...

知识库管理驱动企业知识流动与工作协同创新模式

内容概要 知识库管理在现代企业中扮演着至关重要的角色&#xff0c;其价值不仅体现在知识的积累&#xff0c;还在于通过优质的信息流动促进协作与创新。有效的知识库能够将分散的信息整合为有序、易于访问的资源&#xff0c;为员工提供实时支持&#xff0c;进而提升整体工作效…...

CMake常用命令指南(CMakeList.txt)

CMakeList从入门到精通的文章有很多不再赘述&#xff08; 此处附带一篇优秀的博文链接&#xff1a;一个简单例子&#xff0c;完全入门CMake语法与CMakeList编写 &#xff09;。 本文主要列举 CMake 中常用命令的详细说明、优缺点分析以及推荐做法&#xff0c;以更好地理解和灵…...

【回溯+剪枝】找出所有子集的异或总和再求和 全排列Ⅱ

文章目录 1863. 找出所有子集的异或总和再求和解题思路&#xff1a;子集问题解法&#xff08;回溯 剪枝&#xff09;47. 全排列 II解题思路&#xff1a;排序 回溯 剪枝 1863. 找出所有子集的异或总和再求和 1863. 找出所有子集的异或总和再求和 一个数组的 异或总和 定义为…...

中国技术突破对国际格局的多维影响与回应

链接地址&#xff1a; https://download.csdn.net/download/wanggang130532/90323798https://download.csdn.net/download/wanggang130532/90323798...

【漫话机器学习系列】068.网格搜索(GridSearch)

网格搜索&#xff08;Grid Search&#xff09; 网格搜索&#xff08;Grid Search&#xff09;是一种用于优化机器学习模型超参数的技术。它通过系统地遍历给定的参数组合&#xff0c;找出使模型性能达到最优的参数配置。 网格搜索的核心思想 定义参数网格 创建一个包含超参数值…...

元宇宙下的Facebook:虚拟现实与社交的结合

随着科技的不断进步&#xff0c;虚拟现实&#xff08;VR&#xff09;技术逐渐从科幻走入现实&#xff0c;成为人们探索未来社交方式的重要工具。在这一浪潮中&#xff0c;Facebook&#xff08;现为Meta&#xff09;作为全球领先的社交平台&#xff0c;正在积极布局虚拟现实和元…...

记忆力训练day08

写作头脑风暴训练 1 集体的头脑风暴&#xff1a; 2 一个人的头脑风暴 没事&#xff0c;你说老师我还没有摸到门道&#xff0c;你去做&#xff0c;做的时候你就会知道什么叫做头脑风暴。记住&#xff0c;不要用脑子就在感觉里面&#xff0c;你究竟想给人呈现一种什么样的文章&am…...

崇州市街子古镇正月初一繁华剪影

今天是蛇年正月初一&#xff0c;下午笔者步出家门&#xff0c;逛到了崇州市街子古镇井水街&#xff0c;想看看景象如何。结果看到的是车水马龙、人流如织&#xff0c;繁花似锦&#xff0c;热闹非凡&#xff0c;原来今天开始预订此地摆下的长街宴。心里高兴&#xff0c;便用手机…...

websocket webworker教程及应用

WebSocket 和 Web Workers 是两种不同的 Web 技术&#xff0c;分别用于实现实时通信和后台线程处理。以下是它们的简要教程&#xff1a; WebSocket 教程 1. 什么是 WebSocket&#xff1f; WebSocket 是一种在单个 TCP 连接上进行全双工通信的协议。它允许服务器主动向客户端推…...

【后端】Flask

长期更新&#xff0c;建议关注收藏点赞&#xff01; 实例1 Jinja2 是 Flask 和 Django 使用的 模板引擎&#xff0c;它允许你在 HTML 中嵌入 Python 代码&#xff0c;以动态生成页面内容。Jinja2 语法类似于 Django 模板&#xff0c;并支持变量、条件判断、循环、过滤器等。 fr…...

【cran Archive R包的安装方式】

cran Archive R包的安装方式 添加链接描述 1.包被cran移除 2.包要求的R语言版本与你电脑上的版本不相符 ad archive包的网址或者是下载到工作目录下&#xff0c;ad等于文件名 install,packages(ad repos NULL)...

如何用matlab画一条蛇

文章目录 源代码运行结果代码说明结果 源代码 % 画蛇的代码 % 2025-01-28/Ver1 % 清空环境 clc; clear; close all;% 定义蛇的身体坐标 t linspace(0, 4*pi, 100); % 参数化变量 x t; % x坐标 y sin(t) 0.5 * sin(3*t); % y坐标&#xff0c;形成更复…...

Greenplum临时表未清除导致库龄过高处理

1.问题 Greenplum集群segment后台日志报错 2.回收库龄 master上执行 vacuumdb -F -d cxy vacuumdb -F -d template1 vacuumdb -F -d rptdb 3.回收完成后检查 仍然发现segment还是有库龄报警警告信息发出 4.检查 4.1 在master上检查库年龄 SELECT datname, datfrozen…...

【Linux】gdb——Linux调试器

gdb使用背景 程序的发布方式有两种&#xff0c;debug模式和release模式 Linux gcc/g出来的二进制程序&#xff0c;默认是release模式 要使用gdb调试&#xff0c;必须在源代码生成二进制程序的时候, 加上 -g 选项 gdb使用方法 首先进入gdb gdb test_glist显示代码 断点 b 行…...

C++ 中用于控制输出格式的操纵符——setw 、setfill、setprecision、fixed

目录 四种操纵符简要介绍 setprecision基本用法 setfill的基本用法 fixed的基本用法 setw基本用法 以下是一些常见的用法和示例&#xff1a; 1. 设置字段宽度和填充字符 2. 设置字段宽度和对齐方式 3. 设置字段宽度和精度 4. 设置字段宽度和填充字符&#xff0c;结合…...

C++ ——— 学习并使用 priority_queue 类

目录 何为 priority_queue 类 学习并使用 priority_queue 类 实例化一个 priority_queue 类对象 插入数据 遍历堆&#xff08;默认是大堆&#xff09; 通过改变实例化的模板参数修改为小堆 何为 priority_queue 类 priority_queue 类为 优先级队列&#xff0c;其本质就是…...

基础项目实战——3D赛车(c++)

目录 前言一、渲染引擎二、关闭事件三、梯形绘制四、轨道绘制五、边缘绘制六、草坪绘制七、前后移动八、左右移动​九、曲线轨道​十、课山坡轨道​十一、循环轨道​十二、背景展示​十三、引入速度​十四、物品绘制​十五、课数字路障​十六、分数展示​十七、重新生成​十八、…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

使用LangGraph和LangSmith构建多智能体人工智能系统

现在&#xff0c;通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战&#xff0c;比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

MySQL 8.0 事务全面讲解

以下是一个结合两次回答的 MySQL 8.0 事务全面讲解&#xff0c;涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容&#xff0c;并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念&#xff08;ACID&#xff09; 事务是…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...