python学opencv|读取图像(五十)使用addWeighted()函数实现图像加权叠加效果
【1】引言
前序学习进程中,学习了图像互相叠加的不同操作方法,包括add()函数直接叠加BGR值和使用bitwise()函数对BGR值进行按位计算叠加等,相关文章链接包括且不限于:
python学opencv|读取图像(四十二)使用cv2.add()函数实现多图像叠加-CSDN博客
python学opencv|读取图像(四十九)使用cv2.bitwise()系列函数实现图像按位运算-CSDN博客
实际上,有时候的需求不一定是两张图像完整叠加,而可能是更偏向某一张图像,这就需要调用addWeighted()函数实现图像加权叠加效果。
【2】官网教程
点击下方链接,直达官网对addWeighted()函数的说明网页:
OpenCV: Operations on arrays
官网页面为:

图1 addWeighted()函数的说明网页
官网也给出了addWeighted()函数的参数说明:
void cv::addWeighted (
InputArray src1, #输入图像1
double alpha, #图像1权重
InputArray src2, #输入图像2
double beta, #图像2权重
double gamma, #权重的综合叠加量
OutputArray dst, #输出图像
int dtype = -1 ) #输出图像的深度,为默认值,暂无需关注
【3】代码测试
首先引入相关模块和初始图像:
import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片
srcx = cv.imread('srcx.png') #读取图像srcx.png
srcp = cv.imread('srcp.png') #读取图像srcp.png
rows,cols,cans=srcx.shape #读取图像属性
srcp=cv.resize(srcp,(rows,cols), interpolation=cv.INTER_CUBIC) #统一图像大小
然后对图像进行加权叠加:
#调用cv2.addWeighted()函数进行加权叠加
src=cv.addWeighted(srcx,0.6,srcp,0.2,0.5) #调用cv2.addWeighted()函数进行加权叠加
之后在屏幕显示和保存图像:
#显示和保存图像
cv.imshow('src',src) #显示图像
cv.imshow('srcx',srcx) #显示图像
cv.imshow('srcp',srcp) #显示图像
cv.imwrite('src.png',src) #保存图像
cv.waitKey() # 图像不关闭
cv.destroyAllWindows() # 释放所有窗口
代码使用的初始图像分别为:

图2 第一张图像srcx.png

图3 第二张图像srcp.png

图4 加权叠加的图像src.png
由图2至图4可见,经过加权叠加后,两张图像熔合在一起。
此时的完整代码为:
import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片
srcx = cv.imread('srcx.png') #读取图像srcx.png
srcp = cv.imread('srcp.png') #读取图像srcp.png
rows,cols,cans=srcx.shape #读取图像属性
srcp=cv.resize(srcp,(rows,cols), interpolation=cv.INTER_CUBIC) #统一图像大小#调用cv2.addWeighted()函数进行加权叠加
src=cv.addWeighted(srcx,0.6,srcp,0.2,0.5) #调用cv2.addWeighted()函数进行加权叠加#显示和保存图像
cv.imshow('src',src) #显示图像
cv.imshow('srcx',srcx) #显示图像
cv.imshow('srcp',srcp) #显示图像
cv.imwrite('src.png',src) #保存图像
cv.waitKey() # 图像不关闭
cv.destroyAllWindows() # 释放所有窗口
【4】代码修改
进一步修改代码,交换权重,调高最后的综合叠加量:
src=cv.addWeighted(srcx,0.2,srcp,0.6,3) #调用cv2.addWeighted()函数进行加权叠加
此时获得的叠加效果为:

图5 加权叠加的图像src.png
显然,不同的权重会改百年图像混合的主体,增大最后的综合叠加量,图像会变亮。
【5】细节说明
代码中调用了图像尺寸修改函数,相关函数的说明在之前也介绍过,可以点击链接回忆:
python学opencv|读取图像(三)放大和缩小图像_py opencv图像缩放-CSDN博客
【6】总结
掌握了使用python+opencv调用addWeighted()函数实现图像加权叠加效果的技巧。
相关文章:
python学opencv|读取图像(五十)使用addWeighted()函数实现图像加权叠加效果
【1】引言 前序学习进程中,学习了图像互相叠加的不同操作方法,包括add()函数直接叠加BGR值和使用bitwise()函数对BGR值进行按位计算叠加等,相关文章链接包括且不限于: python学opencv|读取图像(四十二)使…...
window中80端口被占用问题
1,查看报错信息 可以看到在启动项目的时候,8081端口被占用了,导致项目无法启动。 2,查看被占用端口的pid #语法 netstat -aon|findstr :被占用端口#示例 netstat -aon|findstr :8080 3,杀死进程 #语法 taikkill /pid…...
06-机器学习-数据预处理
数据清洗 数据清洗是数据预处理的核心步骤,旨在修正或移除数据集中的错误、不完整、重复或不一致的部分,为后续分析和建模提供可靠基础。以下是数据清洗的详细流程、方法和实战示例: 一、数据清洗的核心任务 问题类型表现示例影响缺失值数值…...
电梯系统的UML文档12
5.2.1 DoorControl 的状态图 图 19: DoorControl 的状态图 5.2.2 DriveControl 的状态图 图 20: DriveControl 的状态图 5.2.3 LanternControl 的状态图 图 21: LanternControl 的状态图 5.2.4 HallButtonControl 的状态图 图 22: HallButtonControl 的状态图 5.2.5 CarB…...
萌新学 Python 之运算符
Python 中运算符包括:算术运算符、比较运算符、逻辑运算符、赋值运算符、位运算符、海象运算符 算术运算符:加 减 - 乘 * 除 / 取整 // 求余 % 求幂 ** 注意:取整时,一正一负整除,向下取整 比如 5 // …...
嵌入式知识点总结 Linux驱动 (五)-linux内核
针对于嵌入式软件杂乱的知识点总结起来,提供给读者学习复习对下述内容的强化。 目录 1.内核镜像格式有几种?分别有什么区别? 2.内核中申请内存有哪几个函数?有什么区别? 3.什么是内核空间,用户空间&…...
zabbix7 配置字体 解决中文乱码问题(随手记)
目录 问题网传的方法(无效)正确的修改方式步骤 问题 zabbix 最新数据 中,图标的中文显示不出。 网传的方法(无效) 网传有一个方法:上传字体文件到/usr/share/zabbix/assets/fonts;修改/usr/…...
预测不规则离散运动的下一个结构
有一个点在19*19的平面上运动,运动轨迹为 一共移动了90步,顺序为 y x y x y x 0 17 16 30 10 8 60 15 15 1 3 6 31 10 7 61 14 15 2 12 17 32 9 9 62 16 15 3 4 12 33 10 9 63 18 15 4 3 18 34 15 12 6…...
CTFSHOW-WEB入门-命令执行29-32
题目:web 29 题目:解题思路:分析代码: error_reporting(0); if(isset($_GET[c])){//get一个c的参数$c $_GET[c];//赋值给Cif(!preg_match("/flag/i", $c)){eval($c);//if C变量里面没有flag,那么就执行C…...
SQL Server 建立每日自动log备份的维护计划
SQLServer数据库可以使用维护计划完成数据库的自动备份,下面以在SQL Server 2012为例说明具体配置方法。 1.启动SQL Server Management Studio,在【对象资源管理器】窗格中选择数据库实例,然后依次选择【管理】→【维护计划】选项࿰…...
doris:HLL
HLL是用作模糊去重,在数据量大的情况性能优于 Count Distinct。HLL的导入需要结合hll_hash等函数来使用。更多文档参考HLL。 使用示例 第 1 步:准备数据 创建如下的 csv 文件:test_hll.csv 1001|koga 1002|nijg 1003|lojn 1004|lofn …...
双层Git管理项目,github托管显示正常
双层Git管理项目,github托管显示正常 背景 在写React项目时,使用Next.js,该项目默认由git托管。但是我有在项目代码外层记笔记的习惯,我就在外层使用了git托管。 目录如下 code 层内也有.git 文件,对其托管。 我没太在意&…...
准备知识——旋转机械的频率和振动基础
旋转频率,也称为转速或旋转速率(符号ν,小写希腊字母nu,也作n),是物体绕轴旋转的频率。其国际单位制单位是秒的倒数(s −1 );其他常见测量单位包括赫兹(Hz)、每秒周期数(cps) 和每分钟转数(rpm)…...
知识库管理驱动企业知识流动与工作协同创新模式
内容概要 知识库管理在现代企业中扮演着至关重要的角色,其价值不仅体现在知识的积累,还在于通过优质的信息流动促进协作与创新。有效的知识库能够将分散的信息整合为有序、易于访问的资源,为员工提供实时支持,进而提升整体工作效…...
CMake常用命令指南(CMakeList.txt)
CMakeList从入门到精通的文章有很多不再赘述( 此处附带一篇优秀的博文链接:一个简单例子,完全入门CMake语法与CMakeList编写 )。 本文主要列举 CMake 中常用命令的详细说明、优缺点分析以及推荐做法,以更好地理解和灵…...
【回溯+剪枝】找出所有子集的异或总和再求和 全排列Ⅱ
文章目录 1863. 找出所有子集的异或总和再求和解题思路:子集问题解法(回溯 剪枝)47. 全排列 II解题思路:排序 回溯 剪枝 1863. 找出所有子集的异或总和再求和 1863. 找出所有子集的异或总和再求和 一个数组的 异或总和 定义为…...
中国技术突破对国际格局的多维影响与回应
链接地址: https://download.csdn.net/download/wanggang130532/90323798https://download.csdn.net/download/wanggang130532/90323798...
【漫话机器学习系列】068.网格搜索(GridSearch)
网格搜索(Grid Search) 网格搜索(Grid Search)是一种用于优化机器学习模型超参数的技术。它通过系统地遍历给定的参数组合,找出使模型性能达到最优的参数配置。 网格搜索的核心思想 定义参数网格 创建一个包含超参数值…...
元宇宙下的Facebook:虚拟现实与社交的结合
随着科技的不断进步,虚拟现实(VR)技术逐渐从科幻走入现实,成为人们探索未来社交方式的重要工具。在这一浪潮中,Facebook(现为Meta)作为全球领先的社交平台,正在积极布局虚拟现实和元…...
记忆力训练day08
写作头脑风暴训练 1 集体的头脑风暴: 2 一个人的头脑风暴 没事,你说老师我还没有摸到门道,你去做,做的时候你就会知道什么叫做头脑风暴。记住,不要用脑子就在感觉里面,你究竟想给人呈现一种什么样的文章&am…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
生成 Git SSH 证书
🔑 1. 生成 SSH 密钥对 在终端(Windows 使用 Git Bash,Mac/Linux 使用 Terminal)执行命令: ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" 参数说明: -t rsa&#x…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...
